【题目】如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在弧上.
(1)求∠E的度数;
(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值
【答案】(1)∠AED=120°;(2)12
【解析】试题分析:
(1)如图,连接BD,由已知条件证△ABD是等边三角形,得到∠ABD=60°,从而由圆内接四边形的性质可得∠AED=120°;
(2)如图,连接OA,由∠ABD=60°,可得∠AOD=120°,结合∠DOE=90°,可得∠AOE=30°,从而可得.
试题解析:
(1)如图,连接BD,
∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠C=180°,
∵∠C=120°,
∴∠BAD=60°,
∵AB=AD,
∴△ABD是等边三角形,
∴∠ABD=60°,
∵四边形ABDE是⊙O的内接四边形,
∴∠AED+∠ABD=180°,
∴∠AED=120°;
(2)连接OA,
∵∠ABD=60°,
∴∠AOD=2∠ABD=120°,
∵∠DOE=90°,
∴∠AOE=∠AOD﹣∠DOE=30°,
∴.
科目:初中数学 来源: 题型:
【题目】如图,,点是直线,之间的一点,连接、.
(1)问题发现:
①若,,则 .
②猜想图中、、的数量关系,并证明你的结论.
(2)拓展应用:
如图,,线段把这个封闭区域分为、两部分(不含边界),点是位于这两个区域内的任意一点(不在边界上),请直接写出、、的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.
当时,正方形ABCD的边长______.
连结OD,当时,______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连结DE,DE=.
(1)求证:;
(2)求EM的长;
(3)求sin∠EOB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为_____;若=2,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、AB于点M、N,再分别以点M、N为圆心,以大于长为半径画圆弧,两弧交于点P,作射线AP交边CD于点E,过点E作EF∥AD交AB于点F.若AB=5,CE=2,则四边形ADEF的周长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.
调查结果统计表
组别 | 成绩分组(单位:分) | 频数 | 频率 |
A | 80≤x<85 | 50 | 0.1 |
B | 85≤x<90 | 75 | |
C | 90≤x<95 | 150 | c |
D | 95≤x≤100 | a | |
合计 | b | 1 |
根据以上信息解答下列问题:
(1)统计表中,a=_____,b=_____,c=_____;
(2)扇形统计图中,m的值为_____,“C”所对应的圆心角的度数是_____;
(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com