【题目】已知:如图,正方形ABCD,E为边AD上一点,△ABE绕点A逆时针旋转90°后得到△ADF.
⑴ 如果∠AEB=65°,求∠DFE的度数;
⑵ BE与DF的数量关系如何?说明理由.
【答案】(1)20°(2)BE⊥DF,证明见解析
【解析】
(1)根据旋转的性质得AE=AF,∠AFD=∠AEB=65°,∠EAB=∠FAD=90°,求出∠AFE即可解决问题.
(2)延长BE交DF于H,根据旋转的性质得∠ABE=∠ADF,由于∠ADF+∠DFA=90°,则∠ABE+∠DFA=90°,根据三角形内角和定理可计算出∠FHB=90°,于是可判断BH⊥DF.
(1)∵△ABE绕点A按逆时针方向旋转90°得到△ADF,
∴AE=AF,∠AFD=∠AEB=65°,∠EAB=∠FAD=90°,
∴∠AFE=∠AEF=45°,
∴∠DFE=∠DFA∠AFE=65°45°=20°
(2)结论:BE⊥DF.
理由:延长BE交DF于H,
∵△ABE绕点A按逆时针方向旋转90°得到△ADF,
∴∠ABE=∠ADF,
∵∠ADF+∠DFA=90°,
∴∠ABE+∠DFA=90°,
∴∠FHB=90°,
∴BE⊥DF.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.
(1)以点C为旋转中心,将旋转后得到,请画出;
(2)平移,使点A的对应点的坐标为,请画出;
(3)若将绕点P旋转可得到,则点P的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是一个长为2m,宽为2n的长方形,沿图中虚线剪成四个均匀的小长方形,然后按图(2)形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形的边长等于多少?
(2)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:,,;
(3)已知:,,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边△;④CG⊥AE( )
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D.
(1)求证:AC平分∠DAB;
(2)求证:AC2=ADAB;
(3)若AD=,sinB=,求线段BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com