【题目】如图,的三边 的长分别为,其三条角平分线交于点,则=______.
【答案】
【解析】
首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.
解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,
∵OA,OB,OC是△ABC的三条角平分线,
∴OD=OE=OF,
∵△ABC的三边AB、BC、CA长分别为40、50、60,
∴S△ABO:S△BCO:S△CAO=(ABOD):(BCOF):(ACOE)
=AB:BC:AC=40:50:60=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】四边形是正方形,是直线上任意一点,于点,于点.当点G在BC边上时(如图1),易证DF-BE=EF.
(1)当点在延长线上时,在图2中补全图形,写出、、的数量关系,并证明;
(2)当点在延长线上时,在图3中补全图形,写出、、的数量关系,不用证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是________________(填写正确的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,正方形ABCD,E为边AD上一点,△ABE绕点A逆时针旋转90°后得到△ADF.
⑴ 如果∠AEB=65°,求∠DFE的度数;
⑵ BE与DF的数量关系如何?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强学生环保意识,我区举办了首届“环保知识大赛”,经选拔后有30名学生参加决赛,这30,名学生同事解答50个选择题,若每正确一个选择题得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 3 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 13 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 2 |
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(4)第4组的同学将抽出3名对第一组3名同学进行“一帮一”辅导,则第4组的小宇与小强能同时抽到的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面内,菱形 ABCD 的对角线相交于点 O,点 O 又是菱形B1A1OC1的一个顶点,菱形 ABCD≌菱形 B1A1OC1,AB=BD=10.菱形B1A1OC1 绕点 O 转动,求两个菱形重叠部分面积的取值范围,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,点E为CD上一点,AE,BE分别平分∠DAB,∠CBA.
(1)求证:AE⊥BE;
(2)求证:DE=CE;
(3)若AE=4,BE=6,求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com