【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
【答案】解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,
令x2﹣3x=0,解得:x=0或3。∴AO=3。
∵△AOB的面积等于6,∴AOBD=6。∴BD=4。
∵点B在函数y=x2﹣3x的图象上,
∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4,
∴x轴下方不存在B点。
∴点B的坐标为:(4,4)。
(3)存在。
∵点B的坐标为:(4,4),∴∠BOD=45°,。
若∠POB=90°,则∠POD=45°。
设P点坐标为(x,x2﹣3x)。
∴。
若,解得x=4 或x=0(舍去)。此时不存在点P(与点B重合)。
若,解得x=2 或x=0(舍去)。
当x=2时,x2﹣3x=﹣2。
∴点P 的坐标为(2,﹣2)。
∴。
∵∠POB=90°,∴△POB的面积为: POBO=××=8。
【解析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
科目:初中数学 来源: 题型:
【题目】如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为( )
A. 5 B. C. 4 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家、食堂,图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系,根据图象,下列说法正确的是( )
A.小明吃早餐用了25min
B.食堂到图书馆的距离为0.6km
C.小明读报用了30min
D.小明从图书馆回家的速度为0.8km/min
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形是正方形,是直线上任意一点,于点,于点.当点G在BC边上时(如图1),易证DF-BE=EF.
(1)当点在延长线上时,在图2中补全图形,写出、、的数量关系,并证明;
(2)当点在延长线上时,在图3中补全图形,写出、、的数量关系,不用证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知分式 A
(1)化简这个分式;
(2)当 a>2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;
(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,正方形ABCD,E为边AD上一点,△ABE绕点A逆时针旋转90°后得到△ADF.
⑴ 如果∠AEB=65°,求∠DFE的度数;
⑵ BE与DF的数量关系如何?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com