精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形中,分别是边上的点,之间的距离为4,则的长为(

A. 3B. C. D.

【答案】D

【解析】

过点DDGBE,垂足为G,则GD4AB,∠G90°,再利用AAS证明△AEB≌△GED,根据全等三角形的性质可得AEEG AEEGx,则ED5x,在RtDEG中,由勾股定理得可得方程x2+42=(5x2 解方程求得x的值即可得AE的长.

过点DDGBE,垂足为G,如图所示:

GD4AB,∠G90°,

∵四边形ABCD是矩形,

ADBC5,∠A90°=∠G

在△AEB和△GED中,

∴△AEB≌△GEDAAS).

AEEG

AEEGx,则ED5x

RtDEG中,由勾股定理得:ED2EG2+GD2

x2+42=(5x2

解得:x,即AE

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:

①△BO′A可以由△BOC绕点B逆时针旋转60°得到;&

②点O与O′的距离为4;

③∠AOB=150°;

④四边形AOBO′的面积为6+3

⑤S△AOC+S△AOB=6+.

其中正确的结论是_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AM为⊙O的切线,A为切点,过⊙O上一点BBDAM于点D,BD交⊙OC,OC平分∠AOB.

(1)求∠AOB的度数;

(2)若线段CD的长为2cm,求的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程

1)求证:该一元二次方程总有两个实数根;

2)若该方程只有一个小于4的根,求m的取值范围;

3)若x1x2为方程的两个根,且nx12+x224,判断动点所形成的数图象是否经过点,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;

(2)在这条抛物线的对称轴右边的图象上有一点B,使AOB的面积等于6,求点B的坐标;

(3)对于(2)中的点B,在此抛物线上是否存在点P,使POB=90°?若存在,求出点P的坐标,并求出POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,一次函数的图象分别与轴交于两点,正比例函数的图象交于点

1)求的值及的解析式;

2)求的值;

3)一次函数的图象为,且不能围成三角形,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里有5个小球,分别标有数字﹣3,﹣2,﹣1,﹣,﹣,这些小球除所标的数不同外其余都相同,先从盒子随机摸出1个球,记下所标的数,再从剩下的球中随机摸出1个球,记下所标的数.

(1)用画树状图或列表的方法求两次摸出的球所标的数之积不大于1的概率.

(2)若以第一次摸出球上的数字为横坐标,第二次摸出球上的数字为纵坐标确定一点,直接写出该点在双曲线y=上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.

1)以点C为旋转中心,将旋转后得到,请画出

2)平移,使点A的对应点的坐标为,请画出;

3)若将绕点P旋转可得到,则点P的坐标为___________.

查看答案和解析>>

同步练习册答案