精英家教网 > 初中数学 > 题目详情

【题目】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论: ①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC= ∠BAC.
其中正确的结论有个.

【答案】4
【解析】解:∵AD平分∠EAC, ∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°﹣∠ABD,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°﹣ ∠ABC,
∴∠ADB不等于∠CDB,∴④错误;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤正确;
即正确的有4个,
所以答案是:4.
【考点精析】关于本题考查的平行线的判定和三角形的内角和外角,需要了解同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列运算中正确的是(
A.a2a3=a6
B.(a23=a5
C.a6÷a2=a3
D.(a2b)2=a4b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将抛物线yx2向右平移1个单位长度,再向上平移3个单位长度,平移后抛物线的解析式是_____.(写成顶点式)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果a=(﹣ 2、b=(﹣2014)0、c=(﹣ 1 , 那么a、b、c的大小关系为(
A.a>b>c
B.a>c>b
C.c>b>a
D.c>a>b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=(x-1)2+5,当-1<x<4时,y的取值范围是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为(
A.(9,0)
B.(﹣1,0)
C.(3,﹣1)
D.(﹣3,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只纸箱质量为1 kg,放入一些苹果(每个苹果质量为0.25 kg)后,纸箱和苹果的总质量不超过10 kg,这只纸箱最多只能装多少个苹果?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x=m是方程x2-2x-3=0的根,则代数式2m2-4m-3的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的一元二次方程x2﹣(2m1x+m2m20

⑴不解方程,判别方程根的情况;

⑵若方程有一个根为1,求m的值.

查看答案和解析>>

同步练习册答案