【题目】解方程:
(1)x2﹣x=0;
(2)x2+4x﹣3=0.
【答案】
(1)解:x2﹣x=0,
x(x﹣1)=0,
x=0,x﹣1=0,
x1=0,x2=1
(2)解:x2+4x﹣3=0,
b2﹣4ac=42﹣4×1×(﹣3)=28,
x= ,
x1=﹣2+ ,x2=﹣2﹣
【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.
【考点精析】通过灵活运用配方法和因式分解法,掌握左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势即可以解答此题.
科目:初中数学 来源: 题型:
【题目】将△ABC各顶点的纵坐标加“﹣3”,连接这三点所成的三角形是由△ABC( )
A. 向上平移3个单位得到的 B. 向下平移3个单位得到的
C. 向左平移3个单位得到的 D. 向右平移3个单位得到的
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )
A.(3+x)(4﹣0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3﹣0.5x)=15
D.(x+1)(4﹣0.5x)=15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.
(1)如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.
(2)在(1)中m∥n,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.
(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
(4)如图3,两面镜子的夹角为α°(0<α<90)时,进入光线与离开光线的夹角为β°
(0<β<90).试探索α与β的数量关系.直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,长方形的两边长分别为m+1,m+7;如图②,长方形的两边
长分别为m+2,m+4.(其中m为正整数)
(1)图①中长方形的面积 =
图②中长方形的面积 =
比较: (填“<”、“=”或“>”)
(2)现有一正方形,其周长与图①中的长方形周长相等,则
①求正方形的边长(用含m的代数式表示);
②试探究:该正方形面积 与图①中长方形面积 的差(即 - )是一个常数,求出这个常数.
(3)在(1)的条件下,若某个图形的面积介于 、 之间(不包括 、 )并且面积为整数,这样的整数值有且只有10个,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,长方形的两边长分别为m+1,m+7;如图②,长方形的两边
长分别为m+2,m+4.(其中m为正整数)
(1)图①中长方形的面积 =
图②中长方形的面积 =
比较: (填“<”、“=”或“>”)
(2)现有一正方形,其周长与图①中的长方形周长相等,则
①求正方形的边长(用含m的代数式表示);
②试探究:该正方形面积 与图①中长方形面积 的差(即 - )是一个常数,求出这个常数.
(3)在(1)的条件下,若某个图形的面积介于 、 之间(不包括 、 )并且面积为整数,这样的整数值有且只有10个,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )
A.40°
B.30°
C.20°
D.10°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com