分析 延长AD至E,使AD=DE,连接BE,根据SAS证出△ADC≌△BDE,得出BE=AC=3,根据勾股定理的逆定理证出△ABE为RT△,AE⊥BE,再根据勾股定理求出BD,最后根据D为BC的中点,得出BD=CD,从而求出CD.
解答
解:延长AD至E,使AD=DE,连接BE,
在△ADC和△BDE中,
$\left\{\begin{array}{l}{AD=DE}\\{∠ADC=∠EDB}\\{BD=CD}\end{array}\right.$,
∴△ADC≌△BDE(SAS),
∴BE=AC=3,
∵AE=4,AB=5,32+42=52,
∴△ABE为RT△,AE⊥BE,
∴BD=$\sqrt{B{E}^{2}+E{D}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
∵D为BC的中点,
∴BD=CD,
∴CD=$\sqrt{13}$.
故答案为:$\sqrt{13}$.
点评 本题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质,勾股定理及勾股定理的逆定理,关键是作出辅助线,证出△ADC≌△BDE.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 40° | B. | 70° | C. | 80° | D. | 140° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①②③④ | B. | ②③④ | C. | ①②④ | D. | ①②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com