精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.

(1)求抛物线的函数解析式;
(2)求△MCB的面积;
(3)根据图形直接写出使一次函数值大于二次函数值的x的取值范围.

【答案】
(1)解:∵A(﹣1,0),C(0,5),D(1,8)三点在抛物线y=ax2+bx+c上,

解方程组得

∴抛物线的解析式为y=﹣x2+4x+5


(2)解:连接OM,如图,

∵y=﹣x2+4x+5=﹣(x﹣2)2+9,

∴M(2,9),

∵抛物线的对称轴为直线x=2,

∴B(5,0),

∴SBCM=SOCM+SBOM﹣SOBC

= ×5×2+ ×5×9﹣ ×5×5

=15


(3)解:x<0或x>2
【解析】(1)把A点、C点和D点坐标代入y=ax2+bx+c得到关于a、b、c的方程组,然后解方程求出a、b、c即可得到抛物线解析式;(2)连接OM,如图,先把(1)中解析式配成顶点式得到M(2,9),再利用对称性得到B(5,0),然后利用SBCM=SOCM+SBOM﹣SOBC进行计算;(3)观察函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,…,如此作下去,则△B2015A2016B2016的顶点A2016的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.

(1)求证:△CDP≌△POB;
(2)填空:
①若AB=4,则四边形AOPD的最大面积为
②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为( )

A.12
B.10
C.8
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(Ⅰ)已知方程①

请判断这两个方程是否有解?并说明理由;
(Ⅱ)已知 ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2 , 直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.

查看答案和解析>>

同步练习册答案