分析 连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.
解答 解:![]()
连接OB,
∵OC=OB,∠BCD=30°,
∴∠BCD=∠CBO=30°,
∴∠BOE=∠BCD+∠CBO=60°,
∵直径CD⊥弦AB,AB=2$\sqrt{2}$,
∴BE=$\frac{1}{2}$AB=$\sqrt{2}$,∠OEB=90°,
∴OB=$\frac{BE}{sin60°}$=$\frac{2\sqrt{6}}{3}$,
即⊙O的半径为$\frac{2\sqrt{6}}{3}$,
故答案为:$\frac{2\sqrt{6}}{3}$.
点评 本题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m≥$-\frac{1}{4}$ | B. | m≤$-\frac{1}{4}$ | C. | m≥$\frac{1}{4}$ | D. | m≤$\frac{1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com