精英家教网 > 初中数学 > 题目详情

【题目】如图,AB的直径,点CD上,且AD平分,过点DAC的垂线,与AC的延长线相交于E,与AB的延长线相交于点FGAB的下半圆弧的中点,DGABH,连接DBGB

证明EF的切线;

求证:

已知圆的半径,求GH的长.

【答案】(1)详见解析;(2)详见解析;(3).

【解析】

1)由题意可证ODAE,且EFAE,可得EFOD,即EFO的切线;(2)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG90°,根据勾股定理可求GH的长.

解:(1)证明:连接OD

OAOD

∴∠OAD=∠ODA

又∵AD平分∠BAC

∴∠OAD=∠CAD

∴∠ODA=∠CAD

ODAE

又∵EFAE

ODEF

EFO的切线

2)∵ABO的直径,

∴∠ADB90°

∴∠DAB+OBD90°

由(1)得,EFO的切线,

∴∠ODF90°

∴∠BDF+ODB90°

ODOB

∴∠ODB=∠OBD

∴∠DAB=∠BDF

又∠DAB=∠DGB

∴∠DGB=∠BDF

3)连接OG

G是半圆弧中点,

∴∠BOG90°

RtOGH中,OG5OHOBBH532

GH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】完成下列各题:

(1)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图1所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)

(2)如图2,在平行四边形ABCD中,点EF分别在ABCD上,AECF.求证:DEBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某小型水库栏水坝的横断面是四边形ABCDDCAB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.21,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点和点处,均在的中垂线上,且到大楼的距离分别为米和米,又已知米,米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以点为圆心,的长为半径画弧,与边交于点,将 绕点旋转后点与点恰好重合,则图中阴影部分的面积为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在斜坡EF上有一信号发射塔CD,某兴趣小组想要测量发射塔CD的高度,于是在水平地面用仪器测得塔顶D的仰角为31°,已知仪器AB高为2m,斜坡EF的坡度为i34,塔底距离坡底的距离CE10m,最后测得塔高为12mABCDE在同一平面内,则仪器到坡底距离AE约为(  )米(结果精确到0.1,参考数据:sin31°≈0.52cos31°≈0.86tan31°≈0.6

A. 18.6 B. 18.7 C. 22.0 D. 24.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BEO的直径,点A和点D0上的两点,过点A作⊙O的切线交BE延长线于点C.

1)若∠ADE=25°,求∠C的度数;

2)若AC=4CE=2,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;

(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.

查看答案和解析>>

同步练习册答案