精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,以点为圆心,的长为半径画弧,与边交于点,将 绕点旋转后点与点恰好重合,则图中阴影部分的面积为_____.

【答案】2-.

【解析】

试题分析:由旋转性质可知BD=AD,所以CD是直角三角形ACB斜边AB边上的中线,所以CD=BD=AD,又因为CB=CD,所以三角形BCD是等边三角形,ABC=DCB=60°,因为AC=2,tan60°=AC:BC=,所以BC=2,BD=2,BD边上的高为,又因为三角形BCD的面积等于三角形ACD的面积,弓形BD的面积等于弓形AD的面积,所以阴影部分的面积等于三角形BCD的面积减去弓形BD的面积,而弓形BD的面积又等于扇形BCD的面积减去等边三角形BCD的面积.代入相关数据,即S阴影==-(-)=2-.故答案为2-.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OHAC于点H.

(1)如图1,求证:B=C;

(2)如图2,当H、O、B三点在一条直线上时,求BAC的度数;

(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC.

(1)如图1中,PGPC的位置关系是   ,数量关系是   

(2)如图2将条件正方形ABCD和正方形BEFG”改为矩形ABCD和矩形BEFG”其它条件不变,求证:PG=PC;

(3)如图3,若将条件正方形ABCD和正方形BEFG”改为菱形ABCD和菱形BEFG”,点A,B,E在同一条直线上,连接DF,P是线段DF的中点,连接PG、PC,且∠ABC=∠BEF=60°,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DFAB,垂足为FDE=DG,△ADG和△AED的面积分别为5040,则△EDF的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°AB=10cmBC=6cm,若点P从点A出发,以每秒4cm的速度沿折线ACBA运动,设运动时间为t秒(t0).

1)若点PAC上,且满足BCP的周长为14cm,求此时t的值;

2)若点P在∠BAC的平分线上,求此时t的值;

3)在运动过程中,直接写出当t为何值时,BCP为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的面积为32,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交BCAD于点EF,若AF3DF,则图中阴影部分的面积等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a﹣2)2+=0.

(1)求直线AB的解析式;

(2)若点M为直线y=mx上一点,且ABM是等腰直角三角形,求m值;

(3)过A点的直线y=kx﹣2k交y轴于负半轴于P,N点的横坐标为﹣1,过N点的直线y=x﹣交AP于点M,试证明的值为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将两个完全相同的三角形纸片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作发现:如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:

①线段DEAC的位置关系是

②设△BDC的面积为S1AEC的面积为S2,则S1S2的数量关系是

(2)猜想论证:

当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)S1S2的数量关系仍然成立,并尝试分别作出了△BDC和△AECBC,CE边上的高,请你证明小明的猜想.

查看答案和解析>>

同步练习册答案