精英家教网 > 初中数学 > 题目详情

【题目】如图,BEO的直径,点A和点D0上的两点,过点A作⊙O的切线交BE延长线于点C.

1)若∠ADE=25°,求∠C的度数;

2)若AC=4CE=2,求⊙O半径的长.

【答案】1)∠C=40°;(2O半径的长是3.

【解析】

(1)连接OA,由圆周角定理得∠A0C=2∠ADE=50°,再由AC是切线可得∠OAC=90°,则可求∠C;

(2),在中运用勾股定理即可求解.

(1)连接OA,

∵∠ADE=25°,由圆周角定理得:∠A0C=2∠ADE=50°,

∵ACOA,

∴∠OAC=90°,

∴∠C=180°-∠AOC-∠OAC=180°-50°-90°=40°;

(2)设

中,由勾股定理得:

解得:r=3,

答:O半径的长是3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB的直径,点CD上,且AD平分,过点DAC的垂线,与AC的延长线相交于E,与AB的延长线相交于点FGAB的下半圆弧的中点,DGABH,连接DBGB

证明EF的切线;

求证:

已知圆的半径,求GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角为45°,此时该同学距地面高度AE20米,电梯再上升5米到达D点,此时测得大楼BC楼顶B点的仰角为37°,求大楼的高度BC.(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学分别用标有数字0、﹣1、4的三张卡片(除了数字不同以外,其余都相同)做游戏,他们将卡片洗匀后,将标有数字的一面朝下放在桌面上,甲先随机抽取一张,抽出的卡片放回,乙再从三张卡片中随机抽取一张.若规定甲同学抽到卡片上的数字比乙同学抽取到卡片上的数字大,则甲同学获胜;否则乙同学获胜.请你用列表法或画树状图法求哪名同学获胜的概率大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系xOy中,如果将点P绕点T(0,t)(t>0)旋转180°得到点Q,那么称线段QP为“拓展带”,点Q为点P的“拓展点”.

(1)当t=3时(0,0)的“拓展点坐标为 ,点(﹣1,1)拓展点”坐标为

(2)如果 t>1,当点M(2,1)的“拓展点”N在函数y=﹣的图象上时,求t的值;

(3)当t=1时,点Q为点P(2,0)的“拓展点”,如果抛物线 y=(x﹣m)2﹣1与“拓展带”PQ有交点,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W(元).

(1)若只在国内销售,当x=1000(件)时,y= (元/件);

(2)分别求出W、W与x间的函数关系式(不必写x的取值范围);

(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CEDF来支撑,点ABCDO上,CEABEDFABF,且AB2EF120°.

(1)求出圆洞门O的半径;

(2)求立柱CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,∠AOB=90°,点A2,1.

1)求点B的坐标;

2)求经过AOB三点的抛物线的函数表达式;

3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案