精英家教网 > 初中数学 > 题目详情

【题目】定义:在平面直角坐标系xOy中,如果将点P绕点T(0,t)(t>0)旋转180°得到点Q,那么称线段QP为“拓展带”,点Q为点P的“拓展点”.

(1)当t=3时(0,0)的“拓展点坐标为 ,点(﹣1,1)拓展点”坐标为

(2)如果 t>1,当点M(2,1)的“拓展点”N在函数y=﹣的图象上时,求t的值;

(3)当t=1时,点Q为点P(2,0)的“拓展点”,如果抛物线 y=(x﹣m)2﹣1与“拓展带”PQ有交点,求m的取值范围.

【答案】(1)(0,6),(1,5);(2);(3)m的取值范围为.

【解析】

(1)根据中心对称可得结果;

(2)把点M坐标带入反比例函数解析式即可得解;

(3)因为抛物线与“拓展带”PQ有交点,所以将点P、Q坐标以分别代入解析式即可解答.

(1)点(0,0)的拓展点坐标为(0,6),点(-1,1)的拓展点坐标为(1,5).

(2)t>1时,点M(2,1)的拓展点N-2,2t-1).

∵点N在函数的图象上,

.

.

(3)t=1时,点P(2,0)的“拓展点Q-2,2),

当抛物线经过点P(2,0)时,可得.

当抛物线经过点Q-2,2)时,可得.

m的取值范围为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙OABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BDCD,过点DBC的平行线,与AB的延长线相交于点P

1)求证:PD是⊙O的切线;

2)求证:PBD∽△DCA

3)当AB=6AC=8时,求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BEO的直径,点A和点D0上的两点,过点A作⊙O的切线交BE延长线于点C.

1)若∠ADE=25°,求∠C的度数;

2)若AC=4CE=2,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.

(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;

(2)函数y=2x2-bx.

①若其不变长度为零,求b的值;

②若1≤b≤3,求其不变长度q的取值范围;

(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1G2两部分组成,若其不变长度q满足0≤q≤3,m的取值范围为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=2x2+m.(1)若点(-2y1)与(3y2)在此二次函数的图象上,则y1_________y2(填“=”);(2)如图,此二次函数的图象经过点(0-4),正方形ABCD的顶点CDx轴上,AB恰好在二次函数的图象上,求图中阴影部分的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣(x+1)(x3)x轴分别交于点AB(AB的右侧),与y轴交于点CP是△ABC的外接圆.

(1)直接写出点ABC的坐标及抛物线的对称轴;

(2)P的半径;

(3)D在抛物线的对称轴上,且∠BDC90°,求点D纵坐标的取值范围;

(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DEAB于点D,AC于点E,则△BEC的周长为(  )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

同步练习册答案