精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.

(1)求证:四边形ABCD是平行四边形;

(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.

【答案】(1)(2)见解析

【解析】试题分析:(1)已知ABCD根据两直线平行,内错角相等可得ABD=CDBAEF=CFB根据平角的定义可得AEB=CFD利用ASA证得ABE≌△CDF根据全等三角形的性质可得AB=CDABCD根据一组对边平行且相等的四边形为平行四边形即可得四边形ABCD是平行四边形(2)平行四边形AECF是矩形根据平行四边形的性质可得OB=OD OA=OC=ACBE=DF证得OE=OF,根据对角线互相平分的四边形为平行四边形可判定四边形AECF是平行四边形,再证得AC=EF根据对角线相等的平行四边形是矩形即可判定平行四边形AECF是矩形.

试题解析:

(1)证明:∵AB∥CD

∴∠ABD=∠CDB

又∵∠AEF=∠CFB

∴∠AEB=∠CFD

又∵BE=DF

∴△ABE≌△CDF(ASA)

∴AB=CD

又∵AB∥CD

∴四边形ABCD是平行四边形;

(2) 平行四边形AECF是矩形,理由如下:

∵四边形ABCD是平行四边形,

OB=OD OA=OC=AC

∵BE=DF

∴OB﹣BE=DO﹣DF

∴OE=OF

又∵OA=OC

∴四边形AECF是平行四边形

又∵AC=2OEEF=2OE

∴AC=EF

∴平行四边形AECF是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上,先从中随机的抽取一张卡片(不放回),将该卡片正面上的数字作为十位数字,再随机的抽取一张卡片,将该卡片正面上的数字作为个位数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图中的图像(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.⑤汽车离出发地64千米是在汽车出发后1.2小时时。其中正确的说法共有( )

A.1个     B.2个      C.3个      D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示,且顶点在网格格点上将△ABC向右平移7个单位长度,再向下平移2个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度),请解决下列问题:

(1)在图中画出平移后的△A1B1C1

(2)直接写出点B1、C1的坐标:B1      ),C1      );

(3)填空:△ABC的面积是   (平方单位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.

(1)如图1,△ABC的面积是   

(2)如图1,在y轴上找一点P,使得△ABP的面积与△ABC的面积相等,请直接写出P点坐标:   

(3)如图2,若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为   度;

(4)如图3,BD∥AC,若AE、DE分别平分∠CAB,∠ODB,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,并在数轴上表示它们的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD进行折纸,已知该纸片宽AB8cm,长BC10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标

查看答案和解析>>

同步练习册答案