精英家教网 > 初中数学 > 题目详情

【题目】若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为

【答案】2
【解析】解:连接OB,OC,过点O作OD⊥BC于D,
∴BC=2BD,
∵⊙O是等边△ABC的外接圆,
∴∠BOC= ×360°=120°,
∵OB=OC,
∴∠OBC=∠OCB= = =30°,
∵⊙O的半径为2,
∴OB=2,
∴BD=OBcos∠OBD=2×cos30°=2× =
∴BC=2BD=2
∴等边△ABC的边长为2
所以答案是:2
【考点精析】掌握等边三角形的性质和三角形的外接圆与外心是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°;过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,于点F,于点M,,已知动点E的速度从A点向F点运动,同时动点G的速度从C点向A点运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t.

______;

的值;

在整个运动过程中,当t取何值时,全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD⊥AC,垂足为D,AB=AC=9,BC=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1个单位长度,向右平移5个单位长度,可以得到三角形A′B′C′.

(Ⅰ)在图中画出△A′B′C′;

(Ⅱ)直接写出点A′、B′、C′的坐标;

(Ⅲ)写出A′C′AC之间的位置关系和大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.

(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;
(3)在抛物线y=﹣x2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.
(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);
(2)请求出所制作圆锥底面的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.

(1)求证:四边形ABCD是平行四边形;

(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年金砖五国峰会将在厦门举行,为了解我区高三年级1200名学生对本次金砖峰会的关注程度,随机抽取了若干名高三年级学生进行调查,按人数和关注程度,分别绘制了以下条形统计图和扇形统计图.
(1)这次调查中,共调查名高三年级学生.
(2)如果把“特别关注”、“一般关注”都统计成关注,那么我区关注本次金砖峰会的高三年级学生大约有多少名?
(3)在这次调查中,有甲、乙、丙、丁四人特别关注本次金砖峰会,现准备从四人中随机抽取两人为本次金砖峰会的志愿者,请用列表法或画树状图的方法求出抽取两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是2017年杭州市某月2408时至2507时的空气质量指数统计图(空气质量指数AQI的值在不同的区间,就代表了不同的空气质量水平.比如0~50之间,代表“良好”,对应的颜色为绿色;51~100之间,代表“中等”,对应的颜色为黄色;101~150之间,代表“对敏感人群不健康”,对应的颜色为橙色,等等),则根据统计图得出的下列判断,正确的是(  )

A. 在这个24小时中,AQI的值超过良好限值时段是2408时至2412

B. 在这个24小时中,AQI对应的颜色为黄色的时段持续了20小时以上

C. 在这个24小时中,AQI的最大值和最小值的差为77

D. 建议中老年朋友在2506时至07时进行晨练

查看答案和解析>>

同步练习册答案