精英家教网 > 初中数学 > 题目详情

【题目】解不等式组 ,并在数轴上表示它们的解集.

【答案】解: 解不等式①得:x≥1,
解不等式②得:x<2,
所以不等式组的解集为:1≤x<2,
其解集在数轴上表示为:

【解析】分别求出每一个不等式的解集,根据解集在数轴上的表示确定不等式组的解集.
【考点精析】本题主要考查了不等式的解集在数轴上的表示和一元一次不等式组的解法的相关知识点,需要掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二 次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四 边形ABCD为1阶准菱形.

(I)判断与推理:

(i)邻边长分别为2和3的平行四边形是_________阶准菱形;

(ii)为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形.

)操作与计算:

已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.

(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;
(3)在抛物线y=﹣x2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.

(1)求证:四边形ABCD是平行四边形;

(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ACDE为菱形时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年金砖五国峰会将在厦门举行,为了解我区高三年级1200名学生对本次金砖峰会的关注程度,随机抽取了若干名高三年级学生进行调查,按人数和关注程度,分别绘制了以下条形统计图和扇形统计图.
(1)这次调查中,共调查名高三年级学生.
(2)如果把“特别关注”、“一般关注”都统计成关注,那么我区关注本次金砖峰会的高三年级学生大约有多少名?
(3)在这次调查中,有甲、乙、丙、丁四人特别关注本次金砖峰会,现准备从四人中随机抽取两人为本次金砖峰会的志愿者,请用列表法或画树状图的方法求出抽取两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊿中,,点分别在 边上,且, .

⑴.求证:⊿是等腰三角形;

⑵.当 时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在计算的过程中,三位同学给出了不同的方法:

甲同学的解法:原式=

乙同学的解法:原式==1;

丙同学的解法:原式=(x+3)(x﹣2)+2﹣x=x2+x﹣6+2﹣x=x2﹣4.

(1)请你判断一下,   同学的解法从第一步开始就是错误的,   同学的解法是完全正确的.

(2)乙同学说:我发现无论x取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把正整数1,2,3,4,…,2 009排列成如图所示的一个表.

(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从小到大依次是__ __,__ __,__ __;

(2)在(1)前提下,当被框住的4个数之和等于416时,x的值是多少?

(3)在(1)前提下,被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案