精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ACDE为菱形时,求BD的长.

【答案】
(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,

∴AE=AB,AF=AC,∠EAF=∠BAC,

∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,

∵AB=AC,

∴AE=AF,

∴△AEB可由△AFC绕点A按顺时针方向旋转得到,

∴BE=CF


(2)解:∵四边形ACDE为菱形,AB=AC=1,

∴DE=AE=AC=AB=1,AC∥DE,

∴∠AEB=∠ABE,∠ABE=∠BAC=45°,

∴∠AEB=∠ABE=45°,

∴△ABE为等腰直角三角形,

∴BE= AC=

∴BD=BE﹣DE= ﹣1


【解析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE= AC= ,于是利用BD=BE﹣DE求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等腰直角三角形,∠BAC=90°,点DBC的中点,作正方形DEFG,连接AE,若BC=DE=2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,则AF的值_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目,为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的4名学生中有2名男生,2名女生.现从这4名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示,且顶点在网格格点上将△ABC向右平移7个单位长度,再向下平移2个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度),请解决下列问题:

(1)在图中画出平移后的△A1B1C1

(2)直接写出点B1、C1的坐标:B1      ),C1      );

(3)填空:△ABC的面积是   (平方单位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:

购买学校

购买型号及数量(个)

购买支出款项(元)

A

B

3

8

622

5

4

402

(1)求A、B两种型号的篮球的销售单价;

(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,并在数轴上表示它们的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等边三角形,点D是射线BC上的一个动点(点D不与点BC重合),ADE是以AD为边的等边三角形,过点EBC的平行线,分别交射线ABAC于点FG,连接BE.

(1)如图(a)所示,当点D在线段BC上时,

①求证:AEB≌△ADC

②探究四边形BCGE是怎样特殊的四边形?并说明理由;

(2)如图(b)所示,当点DBC的延长线上时,直接写出(1)中的两个结论是否成立___________

(3)在(2)的情况下,当点D运动到____________________时,四边形BCGE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度数;

(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)

(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(1﹣2k)x2﹣2x﹣1=0

(1)若此方程为一元一次方程,求k的值.

(2)若此方程为一元二次方程,且有实数根,试求k的取值范围.

查看答案和解析>>

同步练习册答案