精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.

(1)如图1,△ABC的面积是   

(2)如图1,在y轴上找一点P,使得△ABP的面积与△ABC的面积相等,请直接写出P点坐标:   

(3)如图2,若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为   度;

(4)如图3,BD∥AC,若AE、DE分别平分∠CAB,∠ODB,求∠AED的度数.

【答案】(1)4;(2)(0,2)或(0,-2);(3)90;(4)45°.

【解析】

(1)根据点C的坐标为(2,2),CBx轴于B,可得:B的坐标为(2,0),OB=2,

AB=2+2=4,由三角形面积公式可得:则△ABC的面积=,

(2)设P点坐标为(0,y),由题意可得:解得:y=±2,P点坐标为(0,2)或(0,-2),

(3)根据BDAC,利用平行线的性质可得:∠BAC=∠ABD,由于OBD+∠ODB=90°,

因此BAC+∠ODB=90°,

(4)连接AD,根据AE,DE分别平分CAB,∠ODB,利用角平分线的定义可得:∠EAO=BAC, ∠EDO=ODB,继而可得:∠EAO+∠EDO=(∠BAC+ODB=45°,

再根据∠AED+∠EAD+∠EDA=180°∠AED+∠EAO+∠OAD+∠EDO+∠ODA=180°,

∠OAD+∠ODA=90°,可得:∠AED+45°+90°=180°,进而可得:∠AED=45°.

:(1)∵点C的坐标为(2,2),CBx轴于B,

∴点B的坐标为(2,0),OB=2,

AB=2+2=4,

ABC的面积=,

故答案为:4.

(2)设P点坐标为(0,y),由题意得,

由题意可得:

解得:y=±2,

P点坐标为(0,2)或(0,-2),

故答案为:(0,2)或(0,-2),

(3)BDAC,

∴∠BAC=ABD,

∵∠OBD+ODB=90°,

∴∠BAC+ODB=90°,

故答案为:90,

(4)连接AD,

AE,DE分别平分∠CAB,ODB,

∴∠EAO=BAC,EDO=ODB,

∴∠EAO+EDO=(BAC+ODB=45°,

AED+EAD+EDA=180°AED+EAO+OAD+EDO+ODA=180°,

OAD+ODA=90°,

∴∠AED+45°+90°=180°,

∴∠AED=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC.
(1)猜测AE与BE的数量关系,并说明理由;
(2)求证:四边形AEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1个单位长度,向右平移5个单位长度,可以得到三角形A′B′C′.

(Ⅰ)在图中画出△A′B′C′;

(Ⅱ)直接写出点A′、B′、C′的坐标;

(Ⅲ)写出A′C′AC之间的位置关系和大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.
(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);
(2)请求出所制作圆锥底面的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.

(1)求证:四边形ABCD是平行四边形;

(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于反比例函数y= 的图象,下列说法正确的是(
A.图象经过点(1,1)
B.两个分支分布在第二、四象限
C.两个分支关于x轴成轴对称
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年金砖五国峰会将在厦门举行,为了解我区高三年级1200名学生对本次金砖峰会的关注程度,随机抽取了若干名高三年级学生进行调查,按人数和关注程度,分别绘制了以下条形统计图和扇形统计图.
(1)这次调查中,共调查名高三年级学生.
(2)如果把“特别关注”、“一般关注”都统计成关注,那么我区关注本次金砖峰会的高三年级学生大约有多少名?
(3)在这次调查中,有甲、乙、丙、丁四人特别关注本次金砖峰会,现准备从四人中随机抽取两人为本次金砖峰会的志愿者,请用列表法或画树状图的方法求出抽取两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△AOB中点O是原点,点A在y轴上,点B的坐标是(2 ,2),小明做一个数学实验,在x轴上取一动点C,以AC为一边画出等边△ACP,移动点C时,探究点P的位置变化情况.

(1)如图,小明将点C移至x轴负半轴,在AC的右侧画出等边△ACP,并使得顶点P在第三象限时,连接BP,求证:△AOC≌△ABP;
(2)小明在x轴上移动点C,并在AC的右侧画出等边△ACP时,发现点P在某函数图象上,请求出点P所在函数图象的解析式.
(3)小明在x轴上移动点C点时,若在AC的左侧画出等边△ACP,点P会不会在某函数图象上?若会在某函数图象上,请直接写出该函数图象的解析式,若不在某函数图象上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年全国两会于35日至20日在北京召开,为了了解市民获取两会新闻的最主要途径,记者小李开展了一次抽样调查,根据调查结果绘制了如图所示尚不完整的统计图.根据图中信息解答下列问题:

(1)这次接受调查的市民总人数是   

(2)扇形统计图中,电视所对应的圆心角的度数是   

(3)请补全条形统计图;

(4)若该市约有700万人,请你估计其中将电脑上网和手机上网作为获取新闻的最主要途径的总人数.

查看答案和解析>>

同步练习册答案