【题目】如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC.
(1)猜测AE与BE的数量关系,并说明理由;
(2)求证:四边形AEDF是菱形.
【答案】
(1)解:AE= BE.理由如下:
Rt△ABC中,∠A=60°,得∠B=30°.
则在Rt△BDE中有DE= BE.
由对折可知AE=DE,则AE= BE
(2)证明:由∠C=90°,ED⊥BC得DE∥AC,
∴∠DFC=∠EDF=∠A=60°,
∴DF∥AE.
∴四边形AEDF是平行四边形.
又AE=ED,
∴平行四边形AEDF是菱形
【解析】(1)在Rt△ABC中,由直角三角形的性质:两锐角互余得∠B=30°,则在Rt△ADE中有DE=BEsin30°= BE,又由对折可知AE=DE,则AE= BE;(2)易得DE∥AC,所以∠DFC=∠EDF=∠A=60°,所以DF∥AE. 由两组对边分别平行的四边形是平行四边形得,四边形AEDF是平行四边形.
又AE=ED,所以邻边相等的平行四边形AEDF是菱形.
【考点精析】解答此题的关键在于理解菱形的判定方法的相关知识,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
科目:初中数学 来源: 题型:
【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?
(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1 , 0),C(x2 , 0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.
(1)求证:MD和NE互相平分;
(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上,先从中随机的抽取一张卡片(不放回),将该卡片正面上的数字作为十位数字,再随机的抽取一张卡片,将该卡片正面上的数字作为个位数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于函数y= (x﹣6)2+3的图象,下列叙述错误的是( )
A.图象是抛物线,开口向上
B.对称轴为直线x=6
C.顶点是图象的最高点,坐标为(6,3)
D.当x<6时,y随x的增大而减小;当x>6时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y= 上,边CD,BC分别交双曲线于E,F两点,若线段AE过原点,则EF的长为( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在中,的垂直平分线交于点,交于点.的垂直平分线交于点,交于点,连接、,求证:的周长;21.
如图所示,在中,若,,的垂直平分线交于点,交于点.的垂直平分线交于点,交于点,连接、,试判断的形状,并证明你的结论.
如图所示,在中,若,的垂直平分线交于点,交于点,的垂直平分线交于点,交于点,连接、,若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.
(1)如图1,△ABC的面积是 ;
(2)如图1,在y轴上找一点P,使得△ABP的面积与△ABC的面积相等,请直接写出P点坐标: ;
(3)如图2,若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为 度;
(4)如图3,BD∥AC,若AE、DE分别平分∠CAB,∠ODB,求∠AED的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com