精英家教网 > 初中数学 > 题目详情

【题目】已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MN.当∠MAN绕点A旋转到BM=DN时(如图),易证BM+DN=MN

1)当∠MAN绕点A旋转到BMDN时(如图),线段BMDNMN之间有怎样的数量关系?写出猜想,并加以证明;

2)当∠MAN绕点A旋转到如图的位置时,线段BMDNMN之间又有怎样的数量关系?请直接写出你的猜想.

【答案】(1)见解析;(2)见解析.

【解析】

1)分别证明△ABE≌△ADN、△AEM≌△ANM,根据全等三角形的性质解答;

2)由(1)的证明方法相同,证明即可.

1)猜想:BM+DN=MN.证明如下:

如图2,在MB的延长线上,截取BE=DN,连接AE

在△ABE和△ADN中,∵,∴△ABE≌△ADNSAS),∴AE=AN,∠EAB=NAD

∵∠BAD=90°,∠MAN=45°,∴∠BAM+DAN=45°,∴∠EAB+BAM=45°,∴∠EAM=NAM

在△AEM和△ANM中,∵,∴△AEM≌△ANMSAS),∴ME=MN,又ME=BE+BM=BM+DN,∴BM+DN=MN

2DN=MN+BM.证明如下:

如图3,在DC上截取DF=BM,连接AF

在△ABM和△ADF中,∵,∴△ABM≌△ADFSAS),∴AM=AF,∠BAM=DAF,∴∠BAM+BAF=BAF+DAF=90°,即∠MAF=BAD=90°.

∵∠MAN=45°,∴∠MAN=FAN=45°.

在△MAN和△FAN中,∵,∴△MAN≌△FANSAS),∴MN=NF,∴MN=DNDF=DNBM,∴DNBM=MN,∴DN=MN+BM

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的正方形网格中,每个小正方形的边长均为1个单位, 的三个顶点都在格点上.

1)在网格中画出向下平移3个单位得到的

2)在网格中画出关于直线对称的

3)在直线上画一点,使得的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.

(1)求购进A、B两种纪念品每件各需多少元?

(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?

(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话。

⑴现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15.

⑵通过研究问题⑴,利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1

这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某城市按以下规定收取每月的水费,用水不超过7吨,按每吨1.5元收费;若超过7吨,未超过部分仍按每吨1.5元收取,而超过部分则按每吨2.3元收费.

1)如果某用户5月份水费平均为每吨1.6元,那么该用户5月份应交水费多少元?

2)如果某用户5月份交水费17.4元,那么该用户5月份水费平均每吨多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在ABCDEF中,∠A=40°,∠E+F=100°,将DEF如图摆放,使得∠D的两条边分别经过点B和点C

1)当将DEF如图1摆放时,则∠ABD+ACD= 度;

2)当将DEF如图2摆放时,请求出∠ABD+ACD的度数,并说明理由.

3)能否将DE摆放到某个位置时,使得BDCD同时平分∠ABC和∠ACB?直接写出结论 (填不能

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACDBC边的中点,点EF分别在AD及其延长线上,且CEBF,连接BECF

1)求证:四边形EBFC是菱形;

2)若BD4BE5,求四边形EBFC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB分别在射线OMON上运动(不与点O重合).

1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB= °
2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;
3)如图2,若∠MON=n°AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;
4)如图3,若∠MON=80°BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点AB的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时30海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行1.5小时到达小岛C的正南方D.求船从AD一共走了多少海里?

查看答案和解析>>

同步练习册答案