精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABACDBC边的中点,点EF分别在AD及其延长线上,且CEBF,连接BECF

1)求证:四边形EBFC是菱形;

2)若BD4BE5,求四边形EBFC的面积.

【答案】(1)见解析;(2)24.

【解析】

1)由DBC边的中点,CEBF,利用ASA易证得BDF≌△CDE,即可得CEBF,然后由一组对边平行且相等的四边形是平行四边形,证得四边形BFCE是平行四边形;

ABACDBC边的中点,即可得ADBC,又由四边形BFCE是平行四边形,根据对角线互相垂直的平行四边形是菱形,即可证得四边形BFCE是菱形.

2)求出BCEF即可解决问题;

1)证明:∵DBC边的中点,

BDCD

CEBF

∴∠DBF=∠ECD

BDFCDE中,

∴△BDF≌△CDEASA),

CEBF

又∵CEBF

∴四边形BFCE是平行四边形;

ABACDBC的中点,

ADBC

又∵四边形BFCE是平行四边形,

∴四边形BFCE是菱形.

2)解:在RtBDE中,BE5BD4

DE3

∵四边形BECF是菱形,

EF2DE6BC2BD8

∴菱形BECF的面积=×6×824

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 如图,在△ABC中,AB=AC,点PD分别是BCAC边上的点,且∠APD=∠B.

(1)求证:AC·CD=CP·BP;

(2)若AB=10,BC=12,当PDAB时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MN.当∠MAN绕点A旋转到BM=DN时(如图),易证BM+DN=MN

1)当∠MAN绕点A旋转到BMDN时(如图),线段BMDNMN之间有怎样的数量关系?写出猜想,并加以证明;

2)当∠MAN绕点A旋转到如图的位置时,线段BMDNMN之间又有怎样的数量关系?请直接写出你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形,按如图所示的方式放置.点和点分别在直线轴上,已知点,则点的坐标是 ,点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P的坐标为(x1y1),点Q的坐标为(x2y2),且x1x2y1y2.若PQ为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点PQ的“相关矩形”,下图为点PQ的“相关矩形”的示意图.

已知点A的坐标为(10),

1)若点B的坐标为(31),求点AB的“相关矩形”的面积;

2)点C在直线x3上,若点AC的“相关矩形”为正方形,求直线AC的表达式;

3)若点D的坐标为(42),将直线y2x+b平移,当它与点AD的“相关矩形”没有公共点时,求出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD交于点M,点FAD上,AF=6cm,BF=12cm,FBM=CBM,点EBC的中点,若点P1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动__秒时,以P、Q、E、F为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=-x2+2x+3x轴相交于A.B两点(点AB的左侧),与y轴相交于点C,顶点为D.

(1)直接写出A,B,C三点的坐标和抛物线的对称轴;

(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点PPF//DE交抛物线于点F,设点P的横坐标为m:

①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

②设△BCF的面积为S,求Sm的函数关系式.

查看答案和解析>>

同步练习册答案