【题目】甲乙两车从A地驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h,甲、乙两车离A地的距离y(km)与甲车行驶时间x(h)之间的函数图象如图所示.根据图象提供的信息,下列说法:
①乙车速度比甲车慢;②a=40;③乙车比甲车早1.75小时到达B地.
其中正确的有( )
A.0个B.2个C.1个D.3个
【答案】B
【解析】
根据图象即可判断出乙车速度比甲车快;求出甲的速度,根据休息前后速度相同和距离等于速度乘时间求出a的值;求出甲车休息之后行驶路程y(km)与时间x(h)的函数关系式,把y=260代入y=40x-20得x=7,再求出乙车行驶260km需要 =3.25h,即可得到结论.
解:根据题意结合图象可知,乙车比甲车迟出发且先到达,所以乙车速度比甲车快,故说法①错误;
甲车的行驶速度:120÷(3.5-0.5)=40(km/h),
∴a=40.故说法②正确;
设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,根据题意得:
,
解得,
所以y=40x-20;
把y=260代入y=40x-20得,x=7,
∵乙车的行驶速度:120÷(3.5-2)=80(km/h);
∴乙车的行驶260km需要 =3.25(h),
∴7-(2+3.25)=1.75(h).
∴乙车比甲车早1.75小时到达B地.故说法③正确.
综上所述,正确的有②③共2个.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,已知与是两个全等的直角三角形,量得它们的斜边长为,较小锐角为,将这两个三角形摆成如图(1)所示的形状,使点、、、在同一条直线上,且点与点重合,将图(1)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为______.(保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是( )
A. MN= B. 若MN与⊙O相切,则AM=
C. l1和l2的距离为2 D. 若∠MON=90°,则MN与⊙O相切
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边中,,点在上,,点从点出发,以每秒1个单位长度的速度沿方向向点运动,关于的轴对称图形为.
(1)当为何值时,点在线段上;
(2)当时,求与的数量关系;
(3)当点、、三点共线时,求证:点为线段的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把抛物线y=ax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x-3x+5,则a+b+c=__________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线y=a(x-)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,-2).
(1)求a值及A,B两点坐标;
(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角时,请求出m的取值范围;
(3)点E是抛物线的顶点,⊙M沿CD所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,
(1)求D、E两点的坐标.
(2)求过D、E两点的直线函数表达式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架梯子AC长2.5米,斜靠在一面墙上,梯子底端离墙0.7米.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了0.4米到A′,那么梯子的底端在水平方向滑动了几米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com