精英家教网 > 初中数学 > 题目详情

【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使CAD=300CBD=600

(1)求AB的长(精确到0.1米,参考数据:);

(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

【答案】(1)24.2米(2) 超速,理由见解析

【解析】解:(1)由題意得,

在RtADC中,

在RtBDC中,

AB=AD-BD= (米)。

(2)汽车从A到B用时2秒,速度为24.2÷2=12.1(米/秒),

12.1/秒=43.56千米/小时该车速度为43.56千米/小时

43.56千米/小时大于40千米/小时,此校车在AB路段超速

(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,而求得AB的长

(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价xx为正整数),每星期的利润为y元.

1)求yx的函数关系式并写出自变量x的取值范围;

2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由.

3)直接写出售价为多少时,每星期的利润不低于5000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题)

中,,点在直线上(除外),分别经过点和点的垂线,两条垂线交于点,研究的数量关系.

(探究发现)

某数学兴趣小组在探究的关系时,运用从特殊到一般的数学思想,他们发现当点中点时,只需要取边的中点(如图1),通过推理证明就可以得到的数量关系,请你按照这种思路直接写出的数量关系;

(数学思考)

那么点在直线上(除外)(其他条件不变),上面得到的结论是否仍然成立呢?

请你从在线段”“在线段的延长线上”“在线段的反向延长线上三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段是线段上任意一点(不与点重合),分别以为边,在的同侧作等边,连接交于点,连接

时,试求的正切值;

若线段是线段的比例中项,试求这时的值;

记四边形的面积为,当在线段上运动时,是否成正比例,若成正比例,试求出比例系数;若不成正比例,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.

(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是

(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为中国名片的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:

1)普通列车的行驶路程为多少千米?

2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段ADAB的比等于(  )

A. 25:24 B. 16:15 C. 5:4 D. 4:3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二元一次方程,通过列举将方程的解写成下列表格的形式:

-1

5

6

6

5

0

如果将二元一次方程的解所包含的未知数的值对应直角坐标系中一个点的横坐标,未知数的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程的解的对应点是

1)表格中的___________________

2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程的解的对应点所组成的图形是_________,并写出它的两个特征①__________,②_____________

3)若点好落在的解对应的点组成的图形上,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.

1)甲、乙两种套房每套提升费用各多少万元?

2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?

3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a0),市政府如何确定方案才能使费用最少?

查看答案和解析>>

同步练习册答案