精英家教网 > 初中数学 > 题目详情

【题目】如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于

【答案】4
【解析】解:设重叠部分的面积为x,
则正三角形的面积为:a+x=10①,
正方形的面积为:b+x=6②,
①﹣②得,a﹣b=4.
所以答案是:4.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°,以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。

(1)篮球和排球的单价各是多少元?

(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业生产部统计了15名工人某月的加工零件数:

每人加工零件数

540

450

300

240

210

120

人数

1

1

2

6

3

2

(1)求出这15人该月加工零件数的平均数并直接写出中位数和众数;

(2)若生产部领导把每位工人的月加工零件数定为260件,你认为合理否,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸每个小方格是边长为1个单位长度的正方形,在平面直角坐标系中,点A(1,0),B(5,0),C(a,b)D(1,4).

(1)描出A、B、C、D四点的位置.如图,则a=  ;b=  

(2)四边形ABCD的面积是  ;(直接写出结果)

(3)把四边形ABCD向左平移6个单位,再向下平移1个单位得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'B'C'D'的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知△ABC,求证:∠A+∠B+∠C=180°.

通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.

证法1:如图1,延长BCD,过CCE∥BA.

∵BA∥CE(作图2所知),

∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).

∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),

∴∠A+∠B+∠ACB=180°(等量代换).

如图3,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位计划用3天时间进行设备检修,安排小王,小李,小赵三位工程师各带班一天,带班顺序是随机确定的.
(1)请你写出三天带班顺序的所有可能的结果;
(2)求小李和小赵恰好相邻的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学中,有许多关系都是在不经意间被发现的.当然,没有敏锐的观察力是做不到的.数学家们往往是这样来研究问题的:特值探究猜想归纳逻辑证明总结应用.下面我们也来像数学家们那样分四步找出这两个代数式的关系:对于代数式

特值探究

时,________;________

时,________;________

猜想归纳:

观察的结果,写出的关系:________.

逻辑证明:如图,边长为的正方形纸片剪出一个边长为的小正方形之后,剩余部分(即阴影部分)又剪拼成一个矩形(不重叠无缝隙),请你说说是如何用这个图来得出中的关系?

总结应用:利用你发现的关系,求:

①若,且,则________;

的值.(提示:你可能要用到公式

查看答案和解析>>

同步练习册答案