精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知△ABC,求证:∠A+∠B+∠C=180°.

通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.

证法1:如图1,延长BCD,过CCE∥BA.

∵BA∥CE(作图2所知),

∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).

∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),

∴∠A+∠B+∠ACB=180°(等量代换).

如图3,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.

【答案】证明见解析

【解析】

根据平行线性质得出∠1=C,3=B,2+AGF=180°,A+AGF=180°,推出∠2=A,即可得出答案.

如图3,

HFAC,

∴∠1=C,

GFAB,

∴∠B=3,

HFAC,

∴∠2+AGF=180°,

GFAH,

∴∠A+AGF=180°,

∴∠2=A,

∴∠A+B+C=1+2+3=180°(等量代换).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1<BP1),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则APn的长度是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=15,AC=13,高AD=12,则BC的长是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知四边形ABCDD=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行吗?试写出推理过程;

(2)DACEAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班级从甲乙两位同学中选派一人参加“秀美山河”知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,美工计算出甲成绩的平均数是80,甲乙成绩的方差分别是320,40,但绘制的统计图尚不完整.
甲乙两人模拟成绩统计表

根据以上信息,请你解答下列问题:
(1)a=
(2)请完成图中表示甲成绩变化情况的折线;
(3)求乙成绩的平均数;
(4)从平均数和方差的角度分析,谁将被选中.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在数轴上点表示数点表示数,且满足

表示的数为________;点表示的数为________.

若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,则点表示的数________.

若在原点处放一挡板,一小球甲从点处以个单位/秒的速度向左运动;同时另一小球乙从点处以个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为(秒),请分别表示出甲、乙两小球到原点的距离(用含的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小梅将边长分别为长的若干个正方形按一定规律拼成不同的长方形,如图所示.

求第四个长方形的周长;

时,求第五个长方形的面积.(用科学记数法表示)

查看答案和解析>>

同步练习册答案