分析 根据等边三角形的性质可得AB=BC,∠ABC=∠C=60°,然后利用“边角边”证明△ABD和△BCE全等,根据全等三角形对应角相等可得∠BAD=∠CBE,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AFE=∠BAD+∠ABF,然后等量代换即可得证.
解答 证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
在△ABD和△BCE中,$\left\{\begin{array}{l}{AB=BC}\\{∠ABC=∠C}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
由三角形的外角性质得,∠AFE=∠BAD+∠ABF,
=∠CBE+∠ABF,
=∠ABC,
=60°,
即:∠AFE=60°.
点评 本题考查了全等三角形的判定与性质,等边三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com