【题目】如图,在等腰△ABC中,AB=AC,,将点C关于直线AB对称得到点D,作射线BD与CA的延长线交于点E,在CB的延长线上取点F,使得BF=DE,连接AF.
备用图
(1)依题意补全图形;
(2)求证:AF=AE;
(3)作BA的延长线与FD的延长线交于点P,写出一个∠ACB的值,使得AP=AF成立,并证明.
【答案】(1)见解析;(2)证明见解析;(3)∠ACB=54°.证明见解析.
【解析】
根据题意叙述画出图形即可.
(2)由对称可得,DB=BC,∠ABD=∠ABC,再由等量加等量仍是等量可得
BE=CF,易证△ABE ≌ △ACF(SAS),所以 AE=AF.
(3) ∠ACB=54°.由对称和(2)中已证的全等三角形推理可得.
(1)如图所示
2)证明:∵ 点C与点D关于直线AB对称,
∴ DB=BC,∠ABD=∠ABC.
∵ DE=BF,
∴ DE+BD=BF+BC.
∴ BE=CF.
∵ AB=AC,
∴ ∠ABC=∠C.
∴ ∠ABD=∠C.
∴ △ABE ≌ △ACF(SAS).
∴ AE=AF.
(3)∠ACB=54°.
证明:如图,
∵ AB=AC,
∴ ∠ABC=∠ACB=54°.
∴ ∠BAC=180°-∠ABC-∠C=72°.
∵ 点C与点D关于直线AB对称,
∴ ∠DAB=∠BAC=72°,∠ADB=∠C=54°,AD=AB=AC.
∴ ∠DAE=180°-∠DAB-∠BAC=36°,
∴ ∠E=∠ADB-∠DAE=18°.
∵ 由(2)得,△ABF ≌ △ADE(或者△ACF ≌ △ABE),
∴ ∠AFB=∠E=18°.
∴ ∠BAF=∠ABC-∠AFB=36°=∠BAD.
∵ AB=AD,
∴ AF垂直平分BD.
∴ FB=FD.
∴ ∠AFD=∠AFB=18°,
∴ ∠P=∠BAF-∠AFD=18°=∠AFD,
∴ AP=AF.
∵ 由(2)得AE=AF,
∴ AP=AE.
科目:初中数学 来源: 题型:
【题目】已知三个顶点的坐标分别.
(1)画出;
(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;
(3)写出点A的对应点的坐标:___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为3cm,点N在AC边上,AN=1cm.△ABC边上的动点M从点A出发,沿A→B→C运动,到达点C时停止.设点M运动的路程为xcm,MN的长为ycm.
小西根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小西的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了y与x的几组对应值;
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
y/cm | 1 | 0.87 | 1 | 1.32 | 2.18 | 2.65 | 2.29 | 1.8 | 1.73 | 1.8 | 2 |
(2)在平面直角坐标系中,描出补全后的表中各组数值所对应的点,画出该函数的图象;
(3) 结合函数图象,解决问题:当MN=2cm时,点M运动的路程为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.
(1)依题意补全图形;
(2)若OA= ,OB= ,OC=1,求∠OCM的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在矩形中,,点为边上一点,,连接,. 动点以每秒1个单位的速度从点出发沿向终点运动,同时动点以每秒2个单位的速度从点出发沿向终点运动,过点作,交于点,连接、、,设运动时间为秒.
(1)求的长(用含的代数式表示);
(2)求证:四边形为平行四边形;
(3)探索当为何值时,与以,,为顶点的三角形相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分线,CE⊥AN,垂足是E,连接DE交AC于F.
(1)求证:四边形ADCE为矩形;
(2)求证:DF∥AB,DF=;
(3)当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件20元,售价为每件30元,每月可卖出180件,如果该商品计划涨价销售,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.
(1)分析数量关系填表:
每台售价(元) | 30 | 31 | 32 | …… | 30+x |
月销售量(件) | 180 | 170 | 160 | …… | _____ |
(2)求y与x之间的函数解析式和x的取值范围
(3)当售价x(元/件)定为多少时,商场每月销售这种商品所获得的利润y(元)最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当时,的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com