【题目】如图,抛物线 的对称轴为直线 ,与 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:
① ;② 方程 的两个根是 ;③ ;④当 时, 的取值范围是 ;⑤ 当 时, 随 增大而增大;其中结论正确有.
【答案】①②⑤
【解析】∵抛物线与x轴有2个交点,
∴b2-4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,
而点(-1,0)关于直线x=1的对称点的坐标为(3,0),
∴方程ax2+bx+c=0的两个根是x1=-1,x2=3,所以②正确;
∵x=- =1,即b=-2a,
而x=-1时,y=0,即a-b+c=0,
∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(-1,0),(3,0),
∴当-1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,
∴当x<1时,y随x增大而增大,所以⑤正确.
根据抛物线与x轴的交点情况(b2-4ac),可对①作出判断:抛物线y=ax2+bx+c与x轴交点的横坐标就是对应的一元二次方程ax2+bx+c=0的两个根。因此根据对称轴为直线 x = 1 ,与 x 轴的一个交点坐标为(-1,0),即可得出ax2+bx+c=0的两根,就可对②作出判断;根据对称轴为x=1,得出b=-2a,当x=-1时y=0,即a-b+c=0,因此3a+c=0,可对③作出判断;当y>0,观察x轴上方得图像,可知-1<x<3,不能含等号,可对④作出判断;根据二次函数的性质可对⑤作出判断,即可得出答案。
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);
(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与 轴交于 、 两点(点 在点 的左侧),点 的坐标为 ,与 轴交于点 ,作直线 .动点 在 轴上运动,过点 作 轴,交抛物线于点 ,交直线 于点 ,设点 的横坐标为 .
(Ⅰ)求抛物线的解析式和直线 的解析式;
(Ⅱ)当点 在线段 上运动时,求线段 的最大值;
(Ⅲ)当以 、 、 、 为顶点的四边形是平行四边形时,直接写出 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正△ABC中,D,E分别在AC,AB上,且 ,AE=BE,则有( )
A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).
(1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为;
(2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数 的图象经过坐标原点,与x轴的另一个交点为A(-2,0).
(1)求二次函数的解析式
(2)在抛物线上是否存在一点P,使△AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板直角顶点重合于点,,,.
(1)如图(1),若,求证:;
(2)如图(2),若,,则 度;
(3)如图(3),在(1)的条件下,与相交于点,连接,,若,,,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com