精英家教网 > 初中数学 > 题目详情

【题目】如图,在正△ABC中,D,E分别在AC,AB上,且 ,AE=BE,则有( )

A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD

【答案】D
【解析】因为△ABC是正三角形,
所以∠A=∠C=60°,
可设AD=a,则AC=3a,而AB=AC=BC=3a,
所以AE=BE= a,
所以

所以 ,∠A=∠C=60°,
故△AED∽△CBD,故答案为:D.

根据已知结合图形,观察到△AED和△CBD中的∠A=∠C,再证明夹这两个角的两边对应成比例,设AD=a,再分别用含a的代数式表示出AD、AE、DC、BC的长,然后证明AD、AE、DC、BC四条线段成比例,即可得出结论。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,∠AOB=90°,半径OA=2 ,将扇形OAB沿过点B的直线折叠,点O恰好落在 上的点D处,折痕交OA于点C,则阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=120°,SABC=8,点MPN分别是边ABBCAC上任意一点,则:

1AB的长为____________

2PM+PN的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙ 是△ 的外接圆, 为直径,弦 的延长线于点 ,求证:

(Ⅰ)
(Ⅱ) 是⊙ 的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.

(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;

(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 的对称轴为直线 ,与 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:

;② 方程 的两个根是 ;③ ;④当 时, 的取值范围是 ;⑤ 当 时, 增大而增大;其中结论正确有.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物— “福娃”平均每天可售出20套,每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:

(1)边AC,AB,BC的长;

(2)点CAB边的距离;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BAD和BCE均为等腰直角三角形,BAD=BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.

(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;

(2)将图1中的BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:ACN为等腰直角三角形;

(3)将图1中BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.

查看答案和解析>>

同步练习册答案