分析 连结PB,由正方形的性质得到BC=DC,∠BCP=∠DCP,接下来证明△CBP≌△CDP,于是得到DP=BP,然后证明四边形BFPE是矩形,由矩形的对角线相等可得到BP=EF,从而等量代换可证得问题的答案.
解答 证明:连结PB.
∵四边形ABCD是正方形,
∴BC=DC,∠BCP=∠DCP=45°.
∵在△CBP和△CDP中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCP=∠DCP}\\{PC=PC}\end{array}\right.$,
∴△CBP≌△CDP.
∴DP=BP.
∵PE⊥AB,PF⊥BC,∠B=90°
∴四边形BFPE是矩形.
∴BP=EF.
∴DP=EF.
点评 本题主要考查的是正方形的性质、全等三角形的性质和判定、矩形的性质和判定,证得四边形BFPE为矩形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6个 | B. | 5个 | C. | 4个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (4,0) | B. | (-2$\sqrt{2}$,0) | C. | (1,0) | D. | (2,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com