【题目】如图,点A,O,B在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC.
(1)求∠DOE的度数;
(2)写出图中所有互为余角的角.
【答案】(1)90°;(2)见解析.
【解析】
(1)根据邻补角定义得∠AOC+∠BOC=180°,由角平分线定义得∠COD=∠AOC,∠COE=∠BOC,所以∠COD+∠COE=(∠AOC+∠BOC)=90°.即∠DOE=90°.
(2)根据(1)的结论,可以得到互余的角.
解:(1)∵点A,O,B在同一条直线上,
∴∠AOC+∠BOC=180°,
∵射线OD和射线OE分别平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC
∴∠COD+∠COE=(∠AOC+∠BOC)=90°,
∴∠DOE=90°;
(2)互为余角的角有:
∠COD和∠COE,∠AOD和∠BOE,∠AOD和∠COE,∠COD和∠BOE.
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有三个点A、B、C,请回答下列问题.
(1)A、B、C三点分别表示什么数?它们到原点的距离分别是多少?
(2)将点B向左移动3个单位长度后,三个点所表示的数中最小的数是多少?
(3)将点A向右移动4个单位长度后,三个点所表示的数中最小的数是多少?
(4)要怎样移动A、B、C三点中的两个点,才能使三个点表示的数相同?移动方法唯一吗?若不是,请任意选择一种回答,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与双曲线相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线经过点B吗?请说明理由.
【答案】(1)m=-1,k=2;(2)(-1,-2);(3)经过
【解析】试题分析:(1)把A(2,1)分别代入直线与双曲线即可求得结果;
(2)根据函数图象的特征写出两个图象的交点坐标即可;
(3)把x=-1,m=-1代入即可求得y的值,从而作出判断.
(1)把A(2,1)分别代入直线与双曲线的解析式得m=-1,k=2;
(2)由题意得B的坐标(-1,-2);
(3)当x=-1,m=-1代入得y=-2×(-1)+4×(-1)=2-4=-2
所以直线经过点B(-1,-2).
考点:反比例函数的性质
点评:反比例函数的性质是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.
【题型】解答题
【结束】
20
【题目】某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕;
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架梯子的长度为25米,斜靠在墙上,梯子低部离墙底端为7米.
(1)这个梯子顶端离地面有 米;
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在¨ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:
(1)2xy- (4xy-8x2y2)+2(3xy-5x2y2),其中x=,y=-3.
(2)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.
(1)求证:AC2=BCDC;
(2)若BC=5,DC=1,求线段AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com