【题目】如图,已知在矩形ABCD中,AB=a,BC=b,点E是线段AD边上的任意一点(不含端点A、D),连接BE、CE.
若a=5,sin∠ACB= ,解答下列问题:
(1)填空:b=;
(2)当BE⊥AC时,求出此时AE的长;
(3)设AE=x,试探索点E在线段AD上运动过程中,使得△ABE与△BCE相似时,请写x、a、b三者的关系式.
【答案】
(1)12
(2)
解:∵BE⊥AC,
∴∠EBC+∠ACB=90°
又∵∠ABE+∠EBC=90°,
∴∠ABE=∠ACB,
又∵∠BAE=∠ABC=90°,
∴△AEB∽△BAC,
∴ = ,
即 = ,
∴AE=
(3)
解:∵点E在线段AD上的任一点,且不与A、D重合,
∴当△ABE与△BCE相似时,则∠BEC=90°,
①当△ABE∽△EBC时,∠ABE=∠EBC=45°,
∴△EBC是等腰直角三角形,
BC= BE,BE= AB,
∴BC=2AB,即b=2a,x=a或x= b.
②当△BAE∽△CEB
∴∠ABE=∠BCE,
又∵BC∥AD,
∴∠DEC=∠BCE,
∴∠ABE=∠DEC,
又∵∠BAE=∠EDC=90°,
∴△BAE∽△EDC,
∴ = ,
即 = ,
∴x2﹣bx+a2=0,
即(x﹣ )2= ,
当b2﹣4a2≥0,
∵a>0,b>0,
∴b≥2a,
即b≥2a时,x= .
综上所述:当a、b满足条件b=2a时△BAE∽△CEB,此时x= b(或x=a);当a、b满足条件b>2a时△BAE∽△CEB,此时x= .
【解析】解:(1)∵在矩形ABCD中,
∴∠ABC=90°,
∵AB=a=5,sin∠ACB= ,
∴ = ,
∴AC=13,
∴BC= =12,
∴b=12;
所以答案是:12;
【考点精析】利用相似三角形的性质和相似三角形的判定对题目进行判断即可得到答案,需要熟知对应角相等,对应边成比例的两个三角形叫做相似三角形;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).
科目:初中数学 来源: 题型:
【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
A. B. C. D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ACB=60°,半径为1cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题.
(1)写出方程ax2+bx+c=0的根;
(2)写出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k无实数根,写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上,部分点的横、纵坐标x、y的对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | ﹣4 | ﹣4 | 0 | 8 |
(1)根据上表填空; ①方程ax2+bx+c=0的两个根分别是和 .
②抛物线经过点(﹣3,);
③在对称轴左侧,y随x增大而;
(2)求抛物线y=ax2+bx+c的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com