精英家教网 > 初中数学 > 题目详情

【题目】已知AB是⊙O的弦,PAB的中点,连接OA、OP,将△OPA绕点O旋转到△OQB.设⊙O的半径为1,AOQ=135°,则AQ的长为______

【答案】

【解析】

根据等腰三角形的性质得到OP⊥AB,∠AOP=∠BOP,根据旋转的性质得到∠BOQ=∠AOP,QB=AP,推出△AOB是等腰直角三角形,求得∠ABQ=90°,根据勾股定理即可得到结论.

解:如图,∵OA=OB,P为AB的中点,
∴OP⊥AB,∠AOP=∠BOP,
∵将△OPA绕点O旋转到△OQB,
∴∠BOQ=∠AOP,QB=AP,
∴∠AOP=∠BOP=∠BOQ,
∵∠AOQ=135°,
∴∠AOP=∠BOP=∠BOQ=45°,
∴△AOB是等腰直角三角形,
∴AP=OP=BQ=AB,∠OAP=∠ABO=∠OBQ=45°,
∴∠ABQ=90°,
∵OA=OB=1,
∴AB=
∴BQ=
∴AQ=
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点C是O中直径AB上的一个动点,过点C作CDAB交O于点D,点M是直径AB上一固定点,作射线DM交O于点N.已知AB=6cm,AM=2cm,设线段AC的长度为xcm,线段MN的长度为ycm.

小东根据学习函数的经验,对函数y随自变量的变化而变化的规律进行了探索.

下面是小东的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了与y的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

4

3.3

2.8

2.5

2.1

2

(说明:补全表格时相关数值保留一位小数)

(2)在图2中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(3)结合画出的函数图象,解决问题:当AC=MN时,x的取值约为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品零售店为食品厂代销一种面包,未售出的面包可以退回厂家.经统计销售情况发现,当这种面包的销售单价为7角时,每天卖出160个.在此基础上.单价每提高1角时,该零售店每天就会少卖出20个面包.设这种面包的销售单价为x角(每个面包的成本是5角).零售店每天销售这种面包的利润为y角.

(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;

(2)求xy之间的函数关系式:

(3)当这种面包的销售单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A(0,2),B(p,q)在直线上抛物线m经过点B、C(p+4,q),且它的顶点N在直线l.

(1)B(-2,1),

①请在平面直角坐标系中画出直线l与抛物线m的示意图;

②设抛物线m上的点Q的模坐标为e(-2≤e≤0)过点Qx轴的垂线,与直线l交于点H.QH=d,de的增大面增大时,求e的取值范围

(2)抛物线my轴交于点F,当抛物线mx轴有唯一交点时,判断NOF的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年四月份,某校在孝感市争全国文明城市 活动中,组织全体学生参加了弘扬孝感文化,争做文明学生知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分 六个等级,并绘制成如下两幅完整的统计图.

根据表提供的解答下列问题:

(1)本次抽样调查样本容量为 表中: 扇形统计图中, 等级对应圆心角 等于 ;(4分=1+1+1

(2)该校决定从本次抽取 等级学生(为甲、乙、丙、丁)中随机选择 名成为学校文明讲志愿者,请你用列表法或画树状的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+cx轴交于A、B(点A在点B的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.

(1)求抛物线的函数解析式;

(2)求直线BC的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,过B,C两点的⊙OAC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF=,AE2+BE2的值为 ( )

A. 8 B. 12 C. 16 D. 20

查看答案和解析>>

同步练习册答案