精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BED=C.

(1)判断直线AC与圆O的位置关系,并证明你的结论;

(2)若AC=8,cosBED=,求AD的长.

【答案】(1)AC与O相切,证明参见解析;(2).

【解析】

试题分析:(1)由于OCAD,那么OAD+AOC=90°,又BED=BAD,且BED=C,于是OAD=C,从而有C+AOC=90°,再利用三角形内角和定理,可求OAC=90°,即AC是O的切线;(2)连接BD,AB是直径,那么ADB=90°,在RtAOC中,由于AC=8,C=BED,cosBED=,利用三角函数值,可求OA=6,即AB=12,在RtABD中,由于AB=12,OAD=BED,cosBED=,同样利用三角函数值,可求AD.

试题解析:(1)AC与O相切.弧BD是BED与BAD所对的弧,∴∠BAD=BED,OCAD,∴∠AOC+BAD=90°∴∠BED+AOC=90°,即C+AOC=90°∴∠OAC=90°ABAC,即AC与O相切;(2)连接BD.AB是O直径,∴∠ADB=90°,在RtAOC中,CAO=90°AC=8,ADB=90°,cosC=cosBED=AO=6,AB=12,在RtABD中,cosOAD=cosBED=AD=ABcosOAD=12×=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.

(1)求直线CD的解析式;

(2)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:CEQ∽△CDO;

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2bxcx轴交于点ABAB2,与y轴交于点C,对称轴为直线x2

1)求抛物线的函数表达式;

2)根据图像,直接写出不等式x2bxc0的解集:

3)设D为抛物线上一点,E为对称轴上一点,若以点ABDE为顶点的四边形是菱形,则点D的坐标为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点A为双曲线(x>0)上一点,B为x轴正半轴上一点,线段AB的中点C恰好在双曲线上,则△OAC的面积为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一根长为 a 的竹竿 AB 斜靠在墙上,竹竿 AB 的倾斜角为α,当竹竿的顶端 A 下滑到点 A'时,竹竿的另一端 B 向右滑到了点 B',此时倾斜角为β

(1)线段 AA'的长为_____

2)当竹竿 AB 滑到 A'B'位置时,AB 的中点 P 滑到了 P',位置,则点 P 所经过的路线长为___________(两小题均用含 a,α,β的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数的图象分别与线段BC,AC交于点P,Q.若SPAB-SPQB=t,则t的值为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE分别是⊙O两条半径OAOB的中点,

1)求证:CD=CE

2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求yx的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).

(1)小红摸出标有数3的小球的概率是多少?.

(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.

(3)求点P(x,y)在函数y=﹣x+5图象上的概率.

查看答案和解析>>

同步练习册答案