【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=12.
(1)求⊙O半径;
(2)求证:DE为⊙O的切线;
【答案】(1)半径为6;(2)见解析
【解析】
(1)根据直径所对的圆周角是直角,证明AD⊥BC,结合DC=BD可得AB=AC=12,则半径可求出;
(2)连接OD,先证得∠AED=90°,根据三角形中位线定理得出OD∥AC,由平行线的性质,得出OD⊥DE,则结论得证.
解:(1)∵AB为⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
又∵BD=CD,
∴AB=AC=12,
∴⊙O半径为6;
(2)证明:连接OD,
∵∠CDE=∠DAC,
∴∠CDE+∠ADE=∠DAC+∠ADE,
∴∠AED=∠ADB,
由(1)知∠ADB=90°,
∴∠AED=90°,
∵DC=BD,OA=OB,
∴OD∥AC.
∴∠ODF=∠AED=90°,
∴半径OD⊥EF.
∴DE为⊙O的切线.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,P'是边AB上一点,四边形P'Q'M'N'是正方形,点Q',在边BC上,点N'在△ABC内.连接BN',并延长交AC于点N,NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.
(1)求证:四边形PQMN为正方形;
(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于点和,与轴交于点.
(1) , ;
(2)根据函数图象知,
①当时,的取值范围是 ;
②当为 时,.
(3)过点作轴于点,点是反比例函数在第一象限的图象上一点,设直线与线段交于点,当时,求点的坐标.
(4)点是轴上的一个动点,当△MBC为直角三角形时,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2020的坐标为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
捐款的数额(单位:元) | 5 | 10 | 20 | 50 | 100 |
人数(单位:个) | 2 | 4 | 5 | 3 | 1 |
关于这15名同学所捐款的数额,下列说法正确的是
A.众数是100 B.平均数是30 C.极差是20 D.中位数是20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】鄂尔多斯市某百货商场销售某一热销商品A,其进货和销售情况如下:用16000元购进一批该热销商品A,上市后很快销售一空,根据市场需求情况,该商场又用7500元购进第二批该商品,已知第二批所购件数是第一批所购件数的一半,且每件商品的进价比第一批的进价少10元.
(1)求商场第二批商品A的进价;
(2)商场同时销售另一种热销商品B,已知商品B的进价与第二批商品A的进价相同,且最初销售价为165元,每天能卖出125件,经市场销售发现,若售价每上涨1元,其每天销售量就减少5件,问商场该如何定售价,每天才能获得最大利润?并求出每天的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.
(1)求y与x之间的函数关系式;
(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小: y1-y2 y2-y3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com