【题目】已知k为任意实数,随着k的变化,抛物线y=x2﹣2(k﹣1)x+k2﹣5的顶点随之运动,则顶点运动时经过的路径与两条坐标轴围成图形的面积是_____.
【答案】4.
【解析】
先利用配方法得到抛物线的顶点坐标为(k﹣1,2k﹣6),利用顶点横纵坐标的关系可判断抛物线的顶点在直线y=2x﹣4上,再求出直线y=2x﹣4与坐标轴的交点坐标,然后计算直线y=2x﹣4与两条坐标轴围成图形的面积即可.
∵y=x2﹣2(k﹣1)x+k2﹣5=x2﹣2(k﹣1)x+(k﹣1)2+2k﹣6,∴抛物线的顶点坐标为(k﹣1,2k﹣6).
∵2k﹣6=2(k﹣1)﹣4,∴抛物线的顶点在直线y=2x﹣4上,当x=0时,y=﹣4,直线y=2x﹣4与y轴的交点为(0,﹣4);
当y=0时,2x﹣4=0,解得:x=2,直线y=2x﹣4与x轴的交点为(2,0);
∴顶点运动时经过的路径与两条坐标轴围成图形的面积=×2×4=4.
故答案为:4.
科目:初中数学 来源: 题型:
【题目】如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.计算(a+b)n的结果中的各项系数依次对应杨辉三角的第(n+1)行中的每一项,如,(a+b)3=a3+3a2b+3ab2+b3,若t是(a﹣b)2019展开式中ab2018的系数,则t的值为( )
A.2018B.﹣2018C.2019D.﹣2019
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,边长为1的正方形网格中,的三个顶点、、都在格点上.
(1)作关于关于轴的对称图形,(其中、、的对称点分别是、、),并写出点坐标;
(2)为轴上一点,请在图中画出使的周长最小时的点(不写画法,保留画图痕迹),并直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程x2﹣4x+k=0有两个不相等的实数根
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的两条对角线分别长6和8,点P是对角统AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是( )
A. 10 B. 8 C. 5 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.
(1)当t=5秒时,点P走过的路径长为_________;当t=_________秒时,点P与点E重合;
(2)当点P在AC边上运动时,连结PE,并过点E作AB的垂线,垂足为H. 若以C、P、E为顶点的三角形与△EFH相似,试求线段EH的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点Q.在运动过程中,若形成的四边形PEQF为菱形,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com