【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
【答案】(1)EF是⊙O的切线,理由详见解析;(2)详见解析;(3)⊙O的半径的长为2.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(2)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(2)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r2=4,即r=2,
即⊙O的半径的长为2.
科目:初中数学 来源: 题型:
【题目】班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:
(1)大巴与小车的平均速度各是多少?
(2)苏老师追上大巴的地点到基地的路程有多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有_____名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_____;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F为菱形ABCD对角线上的两点,∠ADE=∠CDF,要判定四边形BFDE是正方形,需添加的条件是( )
A.AE=CFB.OE=OFC.∠EBD=45°D.∠DEF=∠BEF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将沿着过中点的直线折叠,使点落在边上的处,称为第1次操作,折痕到的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第2次操作,折痕到的距离记为,按上述方法不断操作下去…经过第2020次操作后得到的折痕到的距离记为,若,则的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=( )
A.1.2 里B.1.5 里C.1.05 里D.1.02 里
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com