精英家教网 > 初中数学 > 题目详情

【题目】如图,将沿着过中点的直线折叠,使点落在边上的处,称为第1次操作,折痕的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第2次操作,折痕的距离记为,按上述方法不断操作下去…经过第2020次操作后得到的折痕的距离记为,若,则的值为______

【答案】

【解析】

根据中点的性质及折叠的性质可得DA=DA=DB,从而可得∠ADA=2B,结合折叠的性质可得.,∠ADA=2ADE,可得∠ADE=B,继而判断DE//BC,得出DEABC的中位线,证得AABC,AA=2,由此发现规律:同理于是经过第n次操作后得到的折痕Dn-1En-1BC的距离,据此求得的值.

解:如图连接AA ,由折叠的性质可得:AA DE, DA=DA,AA均在AA

又∵DAB中点,∴DA=DB,

DB=DA ,
∴∠BA D=B,
∴∠ADA =B +BA D=2B,
又∵∠ADA =2ADE,
∴∠ADE=B
DE//BC,
AABC,
h=1
AA=2,

同理:


∴经过n次操作后得到的折痕Dn-1En-1BC的距离

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点O,△AOB是等边三角形,OEBDBC于点ECD1,则CE的长为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.

(1)判断直线EF与⊙O的位置关系,并说明理由;

(2)若∠A=30°,求证:DG=DA;

(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标为,以线段为边在第四象限内作等边三角形,点正半轴上一动点 连接以线段为边在第四象限内作等边三角形,连接并延长,交轴于点

(1)求证

(2)在点的运动过程中,的度数是否会变化?如果不变,请求出的度数;如果变化,请说明理由

(3)当点运动到什么位置时,以为顶点的三角形是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C20),D0﹣1),N为线段CD上一点(不与CD重合).

1)求以C为顶点,且经过点D的抛物线解析式;

2)设N关于BD的对称点为N1N关于BC的对称点为N2,求证:△N1BN2∽△ABC

3)求(2)中N1N2的最小值;

4)过点Ny轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点为直线上一动点(点不与点重合),以为腰作等腰直角,使,连接

1)观察猜想

如图1,当点在线段上时,

的位置关系为__________

之间的数量关系为___________(提示:可证

2)数学思考

如图2,当点在线段的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;

3)拓展延伸

如图3,当点在线段的延长线时,将沿线段翻折,使点与点重合,连接,若,请直接写出线段的长.(提示:做,做

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将某种商品的售价从原来的每件元经两次调价后调至每件元.

(1)若该商店两次调价的降价率相同,求这个降价率;

(2)经调查,该商品每降价元,即可多销售件.若该商品原来每月可销售件,那么两次调价后,每月可销售该商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1,在中,,点的中点,点边上一点,直线垂直于直线于点,交于点.

1)求证:.

2)如图2,直线垂直于直线,垂足为点,交的延长线于点,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.

销售单价x(元/件)

20

25

30

40

每月销售量y(万件)

60

50

40

20

(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;

(2)当销售单价为多少元时,厂商每月获得的利润为440万元?

(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

同步练习册答案