精英家教网 > 初中数学 > 题目详情

【题目】如图,的直径,的弦,是弧的中点,弦于点,交于点,过点的切线,交延长线于点,连接

1)求证:

2)若,求的长.

【答案】1)详见解析;(2

【解析】

1)连接OC,如图,先利用切线的性质得OCPC,再利用垂径定理得到OCAE,所以PCAE

2)设OCAE交于点H,如图,利用垂径定理得到,根据圆周角定理得,则AF=CF=5,在中利用三角函数的定义可计算出,进而证明,得到AH=CD=8,所以AE=2AH=16,然后证明,于是利用相似比可计算出BE

证明:(1)连接,如图,

的切线,

是弧的中点,

2)设交于点,如图,

中,

,即

故答案为:12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.

1)直接写出关于原点的中心对称图形各顶点坐标:________________________

2)将B点逆时针旋转,画出旋转后图形.在旋转过程中所扫过的图形的面积和点经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种商品,该商品的进价为每件10元,物价部门限定,每件该商品的销售利润不得超过,销售过程中发现月销售量 ()与销售单价 ()之间的关系满足:当时,月销售量为640件;当时,销售单价每增加1元,月销售量就减少20件.

1)请直接写出之间的函数关系式;

2)设该商品的月利润为(元),求之间的函数关系式,并指出当该商品的销售单价定为多少元时,月利润最大,最大月利润是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+cx轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③m≠1时,a+b<am2+bm;④△ABD是等腰直角三角形时,则a= ;⑤△ABC是等腰三角形时,a的值有3个.其中正确的有(  )个

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,弓形中,.若点在优弧上由点移动到点,记的内心为,点随点的移动所经过的路径长为( ).

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________

2)请补全条形统计图;

3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1ACBD是对角线,将DCB绕着点D顺时针旋转45°得到DGHHGAB于点E,连接DEAC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②HED的面积是1;③∠AFG135°;④BC+FG.其中正确的结论是_____.(填入正确的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BDCF成立.

1ABC绕点A逆时针旋转θ(0°θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

2ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.

求证:BDCF;

当AB=2,AD=3时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,BE平分AD于点E

1)如图1,若,求的面积;

2)如图2,过点A,交DC的延长线于点F,分别交BEBC于点GH,且.求证:

查看答案和解析>>

同步练习册答案