【题目】如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
【答案】(1)BD=CF成立,理由详见解析;(2)①详见解析;②.
【解析】
试题分析:(1)先用“SAS”证明△CAF≌△BAD,再用全等三角形的性质即可得BD=CF成立;(2)利用△HFN与△AND的内角和以及它们的等角,得到∠NHF=90°,即可得①的结论;(3)连接DF,延长AB,与DF交于点M,利用△BMD∽△FHD求解.
试题解析:(l)解:BD=CF成立.
证明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF.
(2)①证明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,
在△HFN与△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°,
∴HD⊥HF,即BD⊥CF.
②解:如图,连接DF,延长AB,与DF交于点M.
在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°.
在Rt△BMD与Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD.
∴AB=2,AD=3,四边形ADEF是正方形,∴MA=MD==3.
∴MB=3-2=1,DB==.
∵=.∴=.
∴DH=.
科目:初中数学 来源: 题型:
【题目】在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39 ②,
②一①得:3S―S=39-1,即2S=39-1,
∴S=.
得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是( )
A. 这个多项式是五次四项式
B. 四次项的系数是7
C. 常数项是1
D. 按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】神州十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接.将390000用科学记数法表示应为( )
A. 3.9×104 B. 39×104 C. 3.9×105 D. 0.39×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一种记分的方法:80分以上如88分记为+8分,某个学生在记分表上记为﹣6分,则这个学生的分数应该是( )分.
A. 74 B. ﹣74 C. 86 D. ﹣86
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com