精英家教网 > 初中数学 > 题目详情

【题目】y=x2+(1﹣a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,yx=1时取得最大值,则实数a的取值范围是(  )

A. a≤﹣5 B. a≥5 C. a=3 D. a≥3

【答案】B

【解析】分析:由于二次函数的顶点坐标不能确定,故应分对称轴不在[1,3]和对称轴在[1,3]内两种情况进行解答.

详解:第一种情况:

当二次函数的对称轴不在1≤x≤3内时,此时,对称轴一定在1≤x≤3的右边,函数方能在这个区域取得最大值,

x=>3,即a>7,

第二种情况:

当对称轴在1≤x≤3内时,对称轴一定是在区间1≤x≤3的中点的右边,因为如果在中点的左边的话,就是在x=3的地方取得最大值,即:

x=,即a≥5(此处若a5的话,函数就在13的地方都取得最大值)

综合上所述a≥5.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:()由甲队单独完成这项工程,恰好如期完工;()由乙队单独完成这项工程,比规定工期多6天;()由甲乙两队后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为天,依题意列出方程:.

1)请将()中被墨水污染的部分补充出来:________

2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)ABCD,猜想∠BPD与∠B.D的关系,说明理由.(提示:三角形的内角和等于180°)

①填空或填写理由

解:猜想∠BPD+B+D=360°

理由:过点PEFAB

∴∠B+BPE=180°______

ABCDEFAB

___________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)

∴∠EPD+______=180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

②依照上面的解题方法,观察图(2),已知ABCD,猜想图中的∠BPD与∠B.D的关系,并说明理由.

③观察图(3)(4),已知ABCD,直接写出图中的∠BPD与∠B.D的关系,不说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A-25),B-3,3),C12),点Pm,n)是三角形ABC内任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1m+6,n-2).

1)直接写出平移后点A1B1C1的坐标分别为

2)画出三角形ABC平移后的三角形A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.

求甲、乙两种商品的每件进价;

该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,O外的一点D 在直线AB上.

(1)若AC=,OB=BD.

①求证:CD是⊙O的切线.

②阴影部分的面积是   .(结果保留π)

(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场在黄金周促销期间规定:商场内所有商品按标价的打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:

说明:表示在范围中,可以取到a,不能取到b

根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.

例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:元,实际付款420元.

购买商品得到的优惠率

请问:

购买一件标价为500元的商品,顾客的实际付款是多少元?

购买一件商品,实际付款375元,那么它的标价为多少元?

请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与直线相交于点,直线分别交轴于两点,矩形的顶点分别在上,顶点都在轴上,且点点重合,那么 __________________

查看答案和解析>>

同步练习册答案