精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是_______.

【答案】.

【解析】

分别求出DC=BC=CE=2BD=BF=2,求出∠DCE=90°,∠DBF,分别求出BCDBEF、扇形DBF、扇形DCE的面积,即可得出答案.

FFMBEM,则∠FME=FMB=90°

∵四边形ABCD是正方形,AB=2

∴∠DCB=90°DC=BC=AB=2,∠DCB=45°

由勾股定理得:BD=2

∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF

∴∠DCE=90°BF=BD=2,∠FBE=90°-45°=45°

BM=FM=2ME=2

∴阴影部分的面积S=SBCD+SBFE+S扇形DCE-S扇形DBF

=×2×2+×4×2+-

=6-π

故答案为:6-π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,ACBC是⊙O的两条弦,过点C作∠BCD=∠ACDAB的延长线于点D

1)试说明:CD是⊙O的切线;

2)若tanA,求的值;

3)在(2)的条件下,若AB7DE平分∠ADCAC于点E,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行了“防溺水”知识竞赛,八年级两个班选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).

(1)统计表中,a=________, b =________;

(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额 在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF分别在矩形ABCD的边ABBC上,连接EF,将BEF沿直线EF翻折得到HEFAB8BC6AEEB31

1)如图1,当∠BEF45°时,EH的延长线交DC于点M,求HM的长;

2)如图2,当FH的延长线经过点D时,求tanFEH的值;

3)如图3,连接AHHC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

1)求甲、乙两种商品每件的进价分别是多少元?

2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y轴交于点C

(1)求该抛物线的解析式

(2)如图1,直线l的解析式为y=x抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求OPH的面积;

(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点EF.是否存在点P,使得以PEF为顶点的三角形是等腰三角形?若存在直接写出点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数,有下列结论:①其图象与x轴一定相交;②若,函数在时,yx的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是___.(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为12.则小明从点A走到点D的过程中,他上升的高度为____米;大树BC的高度为____米(结果保留根号).

查看答案和解析>>

同步练习册答案