精英家教网 > 初中数学 > 题目详情

【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

1)求甲、乙两种商品每件的进价分别是多少元?

2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

【答案】(1) 甲商品每件进价为30元,乙商品每件进价为70元;(2) 最大的进货方程是购买甲种商品80件,乙种商品20件,最大利润为1200元.

【解析】

(1)设甲商品每件进价为x元,乙商品每件进价为y元,根据甲商品2件和乙商品3件共需270元,甲商品3件和乙商品2件共需230元,列出方程求解即可;

(2)根据题意可以得到利润与甲种商品的关系,由甲种商品的数量不少于乙种商品数量的4倍,可以得到甲种商品的取值范围,从而可以求得获利最大的进货方案,以及最大利润.

解:(1)设甲商品每件进价为x元,乙商品每件进价为y元,

解得:

∴甲商品每件进价为30元,乙商品每件进价为70元.

(2)设购买甲种商品a件,获利为w元,

解得:

a=80时,w取得最大值,所以w=1200

∴最大的进货方程是购买甲种商品80件,乙种商品20件,最大利润为1200元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】DE分别是ABC两边ABBC所在直线上的点,∠BDE+∠ACB180°DEACAD2BD.

(1) 如图1,当点DE分别在ABCB的延长线上时,求证:BEBD

(2) 如图2,当点DE分别在ABBC边上时,BEBD存在怎样的数量关系?请写出你的结论,并证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景介绍)勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.

(小试牛刀)把两个全等的直角三角形如图1放置,其三边长分别为abc.显然,∠DAB=B=90°ACDE.请用abc分别表示出梯形ABCD、四边形AECDEBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:

S梯形ABCD=

SEBC=

S四边形AECD=

则它们满足的关系式为 ,经化简,可得到勾股定理.

(知识运用)(1)如图2,铁路上AB两点(看作直线上的两点)相距40千米,CD为两个村庄(看作两个点),ADABBCAB,垂足分别为ABAD=25千米,BC=16千米,则两个村庄的距离为 千米(直接填空);

2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.

(知识迁移)借助上面的思考过程与几何模型,求代数式最小值(0x16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.

(1)求y关于x的函数解析式;

(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=ADC.

(1)判断PM与⊙O的位置关系,并说明理由;

(2)若PC=,求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,延长线上的一点,点的中点。

1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。

①作的平分线. ②连接并延长交于点.

2)猜想与证明:试猜想有怎样的关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠DAE=∠BCFDA平分∠BDF.

(1)AEFC会平行吗?说明理由.

(2)ADBC的位置关系如何?为什么?

(3)求证:BC平分∠DBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(10)(30),现同时将点AB分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点AB的对应点CD.连接ACBD.

(1)写出点CD的坐标及四边形ABDC的面积.

(2)y轴上是否存在一点P,连接PAPB,使S三角形PABS四边形ABDC?若存在,求出点P的坐标,若不存在,试说明理由;

(3)Q是线段BD上的动点,连接QCQO,当点QBD上移动时(不与BD重合),给出下列结论:①的值不变;②的值不变,其中有且只有一个正确,请你找出这个结论并求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=2,A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【 】

 A.1 B. C. 2 D.1

查看答案和解析>>

同步练习册答案