【题目】点D、E分别是△ABC两边AB、BC所在直线上的点,∠BDE+∠ACB=180°,DE=AC,AD=2BD.
(1) 如图1,当点D、E分别在AB、CB的延长线上时,求证:BE=BD
(2) 如图2,当点D、E分别在AB、BC边上时,BE与BD存在怎样的数量关系?请写出你的结论,并证明
【答案】(1)证明见解析;(2)BE=3BD
【解析】
(1)在BD上找一点M,连接EM,使EM=ED,如图1.证明
可得EB=AB,利用AD=2BD,AB=AD-BD即可得结论;
(2)在AB上找一点M,连接EM,使EM=ED,如图2.证明可得 由AD=2BD,可得AB=AD+BD=3BD代入,即可得结论.
(1)在BD上找一点M,连接EM,使EM=ED,如图1.
则∠BDE=∠EMD.
∵∠BDE+∠ACB=180°,
∴∠EMB=∠ACB.
∵DE=AC,
∴EM=AC
在△EMB和△ACB中,
∴EB=AB
∵AD=2BD,
∴AB=AD-BD=BD.
∴BE=BD;
(2) BE=3BD,理由如下:在AB上找一点M,连接EM,使EM=ED,如图2.
则∠MDE=∠EMD.
∵DE=AC,
∴EM=AC.
∵∠BDE+∠ACB=180, ∠EDM+∠BDE=180,
∴∠EMD=∠ACB
∵∠EBM=∠ABC,
∵AD=2BD,
∴AB=AD+BD=3BD
.
∴BE=3BD
科目:初中数学 来源: 题型:
【题目】利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.
(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;
(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(结果保留两位有效数字).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC中点,过点D的直线GF交AC于F,交AC的平行线BG于G,DE⊥DF,交AB于E,连接BG,请你判断BE+CF与EF的大小关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为 1,CD⊥AB 于点 D,E 为射线 CD 上一点,以BE为边在 BE 左侧作等边△BEF,则DF的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(0,a)、B(b, 0),且a、b满足: ,点D为x正半轴上一动点
(1)求A、B两点的坐标
(2)如图,∠ADO的平分线交y轴于点C,点 F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°, 判断线段AH、FD、AD三者的数量关系,并予以证明
(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点O在直线AB上,点A1、A2、A3,…在射线OA上,点B1、B2、B3,…在射线OB上,图中的每一个实线段和虚线段的长均为一个单位长度,一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度,按此规律,则动点M到达A101点处所需时间为____秒.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某种产品展开图,高为3cm.
(1)求这个产品的体积.
(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此长方体的表面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com