精英家教网 > 初中数学 > 题目详情
9.某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号2号3号4号5号总数
甲班1009811089103500
乙班891009511997500
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)填空:甲班的优秀率为60%,乙班的优秀率为40%;
(2)填空:甲班比赛数据的中位数为100,乙班比赛数据的中位数为97;
(3)填空:估计两班比赛数据的方差较小的是甲班(填甲或乙)
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.

分析 (1)根据每人踢100个以上(含100)为优秀和图表给出的数据即可得出甲班和乙班的优秀率;
(2)根据中位数的定义先把数据从小到大排列,再找出最中间的数即可;
(3)先求出甲班和乙班的平均数,再根据方差公式即可得出答案;
(4)根据甲班的优秀率高于乙班,甲班的成绩从中位数看也高于乙班,甲班的方差小于乙班,成绩更稳定,从而得出答案.

解答 解:(1)甲班的优秀率为:$\frac{3}{5}$×100%=60%,乙班的优秀率为$\frac{2}{5}$×100%=40%;

(2)把甲班比赛数据从小到大排列为:89,98,100,103,110,最中间的数是100,则甲班比赛数据的中位数为100;
把乙班比赛数据从小到大排列为:89,95,97,100,119,最中间的数是97,则乙班比赛数据的中位数为97;
故答案为:100,97;

(3)甲班的平均数是:(89+98+100+103+110)÷5=100(个);
乙班的平均数是:(89+95+97+100+119)÷5=100(个),
甲的方差是:$\frac{1}{5}$[(89-100)2+(98-100)2+(100-100)2+(103-100)2+(110-100)2]=46.8,
乙的方差是:$\frac{1}{5}$[(89-100)2+(95-100)2+(97-100)2+(100-100)2+(119-100)2]=103.2,
则甲班的方差较小;
故答案为:甲;

(4)甲班,理由:甲班的优秀率高于乙班,甲班的成绩从中位数看也高于乙班,甲班的方差小于乙班,成绩更稳定.

点评 本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知AB为⊙O的直径,CA、CD分别于⊙O相切于A、D两点.
(1)如图1,若AC=4,AB=6,求tan∠B的值;
(2)如图2,若cos∠ACB=$\frac{3}{5}$,求tan∠CBD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,平面直角坐标系中,直线y=$\frac{4}{3}$x+8分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿射线AO以每秒2个单位长度的速度运动,当点C到达D点时,两点同时停止运动.过点P作PH⊥OA,垂足为H,连接NP.设点P的运动时间为t秒.
①是否存在△NPH的面积为4,如果存在,请说明理由.
②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某商场统计了每个营业员在某月的销售额,统计图如下:

(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.试求出不称职、基本称职、称职、优秀四个层次营业员人数所占百分比.
(2)据(1)规定,所有称职和优秀的营业员月销售额的中位数、众数和平均数分别是多少?
(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得一半称职和优秀的营业员能获奖,你认为这个奖励标准应定为多少元合适?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解下列不等式(组),并在数轴上表示解集
(1)3(x+1)<4(x+2)-3.
(2)$\frac{x-1}{3}$≤$\frac{3x-4}{6}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简求值(x+y)(x-y)-(x-2y)2-(10x2y-10xy2)÷2x,其中x=-2,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于(  )
A.20°B.40°C.60°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2010年5月20日上午10时起,2010年广州亚运会门票全面发售.下表为抄录广州亚运会官方网公布的三类比赛的部分门票价格,如图为某公司购买的门票种类、数量所绘制成的条形统计图.
比赛项目票价(元/张)
羽毛球400
艺术体操240
田径x
依据上面的表和图,回答下列问题:
(1)其中观看羽毛球比赛的门票有30张;观看田径比赛的门票占全部门票的20%.
(2)公司决定采用随机抽取的方式把门票分配给部分员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小丽抽到艺术体操门票的概率是$\frac{1}{2}$.
(3)若该公司购买全部门票共花了36000元,试求每张田径门票的价格.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.2014年的一份调查报告显示,苏州城市人口(常驻人口加流动人口)跨入千万行列,达到10460000人,数字10460000用科学记数法表示为1.046×107

查看答案和解析>>

同步练习册答案