【题目】用适当的方法解方程:
(1)(2x﹣5)2﹣9=0
(2)2x2﹣3x﹣2=0
(3)x2+2x﹣399=0
(4)2(x﹣3)=2x(x﹣3)
【答案】(1)x1=1,x2=4;(2)x1=﹣,x2=2;(3)x1=﹣21,x2=19;(4)x1=3,x2=1.
【解析】
(1)根据因式分解法即可求解;
(2)根据因式分解法即可求解;
(3)根据因式分解法即可求解;
(4)根据因式分解法即可求解.
解:(1)(2x﹣5)2﹣9=0,
(2x﹣5+3)(2x﹣5﹣3)=0,
2x﹣5+3=0,2x﹣5﹣3=0,
x1=1,x2=4;
(2)2x2﹣3x﹣2=0,
(2x+1)(x﹣2)=0,
2x+1=0,x﹣2=0,
x1=﹣,x2=2;
(3)x2+2x﹣399=0,
(x+21)(x﹣19)=0,
x+21=0,x﹣19=0,
x1=﹣21,x2=19;
(4)2(x﹣3)=2x(x﹣3),
2(x﹣3)﹣2x(x﹣3)=0,
2(x﹣3)(1﹣x)=0,
x﹣3=0,1﹣x=0,
x1=3,x2=1.
科目:初中数学 来源: 题型:
【题目】在一次数学课上,张老师出示了一个题目:“如图,ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,请根据上述条件,写出一个正确结论”其中四位同学写出的结论如下:
小青:;小何:四边形DFBE是正方形;
小夏:;小雨:.
这四位同学写出的结论中不正确的是
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).
①方程是倍根方程;
②若是倍根方程,则;
③若点在反比例函数的图像上,则关于的方程是倍根方程;
④若方程是倍根方程,且相异两点, 都在抛物线上,则方程的一个根为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在Rt△ABC 中, ,D、E是斜边BC上两动点,且∠DAE=45°,将△绕点逆时针旋转90后,得到△,连接.
(1)试说明:△≌△;
(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;
(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=12,P为线段AB上的一个动点,分别以AP、PB为边在AB的同侧作菱形APCD和菱形PBFE,点P、C、E在一条直线上,∠DAP=60°.M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,点M、N之间的距离最短为______.(结果留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料阅读:如图①所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.
解决问题:
(1)观察“规形图”,试探究与,,之间的数量关系,并说明理由;
(2)请你直接利用以上结论,解决以下两个问题:
Ⅰ.如图②,把一块三角尺放置在上,使三角尺的两条直角边,恰好经过点,,若,则_____.
Ⅱ.如图③,平分,平分,若,,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.
(1)求m,k,n的值;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com