【题目】永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
(1)该班共有学生 人,并补全条形统计图;
(2)求“篮球”所在扇形圆心角的度数;
(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率.
【答案】(1)50,图形见解析;(2)72°;(3)
【解析】
(1)用排球的人数除以它所占的百分比即可得到全班人数,用总人数减去其它选课的人数求出乒乓球的人数,从而补全统计图;
(2)用篮球的所占百分比乘以360°即可得到在扇形统计图中“篮球”对应扇形的圆心角的度数;
(3)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.
(1)该班共有学生(人),
乒乓球有50﹣10﹣12﹣9﹣5=14(人),
补图如下:
故答案为:50;
(2);
(3)根据题意画图如下:用A表示篮球,用B表示足球,用C表示排球;
共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占4种,
所以选出的2人恰好1人选修篮球,1人选修足球的概率
所求的概率为 .
科目:初中数学 来源: 题型:
【题目】2019年3月30日,四川省凉山州木里县境内发生森林火灾,30名左右的扑火英雄牺牲,让人感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完整的统计图表:
组别 | 成绩x/分 | 组中值 |
A | 50≤x<60 | 55 |
B | 60≤x<70 | 65 |
C | 70≤x<80 | 75 |
D | 80≤x<90 | 85 |
E | 90≤x<100 | 95 |
请根据图表提供的信息,解答下列各题:
(1)补全频数分布直方图和扇形统计图;
(2)分数段80≤x<90对应扇形的圆心角的度数是 °,所抽取的学生竞赛成绩的中位数落在 区间内;
(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),顶点坐标为(1,m),与y轴交点在(0,3),(0,4)之(不包含端点),现有下列结论:①3a+b>0;②-<a<-1;③关于x的方程ax2+bx+c=m-2有两个不相等的实数根:④若点M(-1.5,y1),N(2.5,y2)是函数图象上的两点,则y1=y2.其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.
(1)判断线段OA,OP的数量关系,并说明理由.
(2)当OD=时,求CP的长.
(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,得出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC.其中正确结论的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
【答案】(1)①1;②40°;(2),90°;(3)AC的长为3或2.
【解析】
(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;
②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;
(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则,由全等三角形的性质得∠AMB的度数;
(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.
(1)问题发现:
①如图1,
∵∠AOB=∠COD=40°,
∴∠COA=∠DOB,
∵OC=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,
∴
②∵△COA≌△DOB,
∴∠CAO=∠DBO,
∵∠AOB=40°,
∴∠OAB+∠ABO=140°,
在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,
(2)类比探究:
如图2,,∠AMB=90°,理由是:
Rt△COD中,∠DCO=30°,∠DOC=90°,
∴,
同理得:,
∴,
∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
∴△AOC∽△BOD,
∴ ,∠CAO=∠DBO,
在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;
(3)拓展延伸:
①点C与点M重合时,如图3,
同理得:△AOC∽△BOD,
∴∠AMB=90°,,
设BD=x,则AC=x,
Rt△COD中,∠OCD=30°,OD=1,
∴CD=2,BC=x-2,
Rt△AOB中,∠OAB=30°,OB=,
∴AB=2OB=2,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x2)2=(2)2,
x2-x-6=0,
(x-3)(x+2)=0,
x1=3,x2=-2,
∴AC=3;
②点C与点M重合时,如图4,
同理得:∠AMB=90°,,
设BD=x,则AC=x,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x+2)2=(2)2.
x2+x-6=0,
(x+3)(x-2)=0,
x1=-3,x2=2,
∴AC=2;.
综上所述,AC的长为3或2.
点睛:本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.
【题型】解答题
【结束】
25
【题目】如图,已知抛物线y=ax2+bx﹣3(a≠0)经过点A(3,0),B(﹣1,0).
(1)求该抛物线的解析式;
(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;
(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为( )
A. (﹣2018,3)B. (﹣2018,﹣3)
C. (﹣2016,3)D. (﹣2016,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,矩形ABCD,AB=2,BC=4,对角线AC,BD相交于点O,点P在对角线BD上,并且A,O,P组成以OP为腰的等腰三角形,那么OP的长等于___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com