精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线x轴交于A(-1,0)B(3,0)两点,交y轴于点E.

(1)求此抛物线的解析式.

(2)若直线y=x+1与抛物线交于AD两点,与y轴交于点F,连接DE,求DEF的面积.

【答案】(1)y=x2﹣2x﹣3;(2)S△DEF=8.

【解析】

(1)利用待定系数法求二次函数解析式即可;

(2)首先求出直线与二次函数的交点坐标进而得出EF点坐标,即可得出DEF的面积.

解:(1)∵抛物线y=x2+bx+cx轴交于A(﹣10)和B30)两点,

解得:

故抛物线解析式为:y=x22x3

(2)根据题意得:

解得:,∴D45),

对于直线y=x+1,当x=0时,y=1,∴F01),

对于y=x22x3,当x=0时,y=3,∴E0,﹣3),

EF=4

过点DDMy轴于点M

SDEF=EF·DM=8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在线段BD上,在BD的同侧作等腰RtABC和等腰RtADECDBEAE分别交于点PM.对于下列结论:①△BAE∽△CADMPMDMAME2CB2CPCM.其中正确的是(   )

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角△ABC中,∠C=90°,AC15BC20,点DAB边上一动点,若AD的长度为m,且m的范围为0m9,在ACBC边上分别取两点EF,满足EDABFEED

1)求DE的长度;(用含m的代数式表示)

2)求EF的长度;(用含m的代数式表示)

3)请根据m的不同取值,探索过DEF三点的圆与△ABC三边交点的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形的边长为,点分别在轴正半轴与轴正半轴上,是对角线.点出发向点运动(不与点重合),到达点时停止运动,射线轴于点轴于点,交轴于点,连结.

1)求证:

2)请探究:的面积是否变化?若不变化,试求出的面积;若变化,请说明理由;

3)当为何值时,是等腰直角三角形;

4)过点作,垂足为点,请直接写出点运动的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图像如图所示,则下列五个结论中:①albic0;②ab+c0;③2ab0;④abc0;⑤4a+2b+c0,错误的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为AB,则四边形OAPB周长的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为1的扇形AOB中,∠AOB90°,点C是弧AB上的一个动点(不与点AB重合)ODBCOEAC,垂足分别为DE

1)当时,求线段OD的长;

2)在△DOE中是否存在长度保持不变的边?如果存在,请指出是哪条边,并求其长度;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案