【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距 千米,慢车速度为 千米/小时.
(2)求快车速度是多少?
(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.
(4)直接写出两车相距300千米时的x值.
【答案】(1)600, 60;(2)快车速度是90千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣600;(4)当x=2小时或x=6小时时,两车相距300千米.
【解析】
1)由当x=0时y=600可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;
(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;
(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;
(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤时的函数关系式中求出x值,此题得解.
(1)∵当x=0时,y=600,
∴甲乙两地相距600千米.
600÷10=60(千米/小时).
故答案为:600;60.
(2)设快车的速度为a千米/小时,
根据题意得:4(60+a)=600,
解得:a=90.
答:快车速度是90千米/小时.
(3)快车到达甲地的时间为600÷90=(小时),
当x=时,两车之间的距离为60×=400(千米).
设当4≤x≤时,y与x之间的函数关系式为y=kx+b(k≠0),
∵该函数图象经过点(4,0)和(,400),
∴,解得:,
∴从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣600.
(4)设当0≤x≤4时,y与x之间的函数关系式为y=mx+n(m≠0),
∵该函数图象经过点(0,600)和(4,0),
∴,解得:,
∴y与x之间的函数关系式为y=﹣150x+600.
当y=300时,有﹣150x+600=300或150x﹣600=300,
解得:x=2或x=6.
∴当x=2小时或x=6小时时,两车相距300千米.
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,对角线与相交于点,平分,交于点.
求证:;
点、点分别同时从、两点出发,以相同的速度运动相同的时间后同时停止,如图,平分,交于点,过点作,垂足为,请猜想,与三者之间的数量关系,并证明你的猜想;
在的条件下,当,时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,点A(1,1),B(3,1),C(3,2),反比例函数y= (x>0)的图象经过点D,且与AB相交于点E,
(1)求反比例函数的解析式;
(2)过点C、E作直线,求直线CE的解析式;
(3)如图2,将矩形ABCD沿直线CE平移,使得点C与点E重合,求线段BD扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,∠ACB=90°,AC=BC,D为直线AB上一点,作直线CD,AE⊥CD于E,BF⊥CD于F.
(1)若D在线段AB上,如图,试猜想线段EF、AE和BF之间的数量关系,并证明你的猜想;
(2)若D在线段AB的延长线上,请你根据题意画出图形,试猜想线段EF、AE和BF之间的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是边长为8的等边三角形,AD⊥BC于点D,DE⊥AB于点E.
(1)求证:AE=3EB
(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP的长;
(3)在(2)的条件下,连接EF,当PE+PF取最小值时,△PEF的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.阅读:若x满足(80﹣x)(x﹣60)=30,求的值.
解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,
所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340,
请仿照上例解决下面的问题:
(1)若 x 满足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.
(2)如图,正方形 ABCD 的边长为 x,AE=10,CG=25,长方形 EFGD 的面积是500,四边形 NGDH 和 MEDQ 都是正方形,PQDH 是长方形,那么图中阴影部分的面积等于_____(结果必须是一个具体数值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°
(1)当CE⊥AB时,点D与点A重合,求证:DE2=AD2+BE2
(2)当AB=4时,求点E到线段AC的最短距离
(3)当点D不与点A重合时,探究:DE2=AD2+BE2是否成立?若成立,请证明;若不成立,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,⊙O是△ABC的内切圆,D、E、F是切点.
(1)求证:四边形ODCE是正方形;
(2)如果AC=6,BC=8,求内切圆⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com